Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức:
\(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \)
\(AB = \sqrt {{{\left( {{x_B} + {x_A}} \right)}^2} + {{\left( {{y_B} + {y_A}} \right)}^2} + {{\left( {{z_B} + {z_A}} \right)}^2}} \)
\(AB = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {{y_B} - {y_A}} \right)^2} + {\left( {{z_B} - {z_A}} \right)^2}\)
$AB = {\sqrt {\left( {{x_B} - {x_A}} \right)} ^2} + {\sqrt {\left( {{y_B} - {y_A}} \right)} ^2} + {\sqrt {\left( {{z_B} - {z_A}} \right)} ^2}$
Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \)
Đáp án : A
Một số em sẽ chọn nhầm đáp án B vì nhớ nhầm công thức tính độ dài đoạn thẳng.

Các bài tập cùng chuyên đề