Đề bài

Bạn Nam tung một đồng xu cân đối và đồng chất 20 lần, có 13 lần mặt ngửa. Xác suất thực nghiệm của biến cố “Mặt sấp xuất hiện” là

  • A.

    \(\frac{13}{20}\)

  • B.

    \(\frac{7}{20}\)

  • C.

    \(\frac{13}{7}\)

  • D.

    \(\frac{7}{13}\)

Phương pháp giải

- Tính số lần xuất hiện mặt sấp.

- Để tính xác suất của biến cố "Mặt sấp xuất hiện", ta lấy số lần xuất hiện mặt sấp chia cho tổng số lần.

Lời giải của GV Loigiaihay.com

Số lần xuất hiện mặt sấp là: \(20 - 13 = 7\)

Xác suất để mặt sấp xuất hiện là: \(\frac{7}{{13}}\)

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Một cửa hàng thống kê số lượng các loại điện thoại bán được trong một năm vừa qua như sau:

Loại điện thoại

A

B

C

Số lượng bán được (chiếc)

712

1035

1085

 Tính xác suất thực nghiệm của biến cố E: "Chiếc điện thoại loại A được bán ra trong năm đó của cửa hàng"

Xem lời giải >>
Bài 2 :

Ông An theo dõi và thống kê số cuộc gọi điện thoại đến cho ông trong 1 ngày. Sau 59 ngày theo dõi, kết quả thu được như sau:

Số cuộc điện thoại gọi đến trong một ngày

0

1

2

3

4

5

6

7

8

Số ngày

5

9

15

10

5

6

4

2

3

Gọi A là biến cố "Trong một ngày ông An nhận được nhiều hơn 6 cuộc gọi". Hỏi trong 59 ngày có bao nhiêu ngày biến cố A xuất hiện

Xem lời giải >>
Bài 3 :

Tung một chiếc kẹp giấy 145 lần xuống sàn nhà lát gạch đá hoa hình vuông. Quan sát thấy có 113 lần chiếc kẹp nằm hoàn toàn bên trong hình vuông và 32 lần chiếc kẹp nằm trên cạnh hình vuông. Tính xác suất thực nghiệm của các biến cố sau:

a) E: " Chiếc kẹp giấy nằm hoàn toàn trong hình vuông"

b) F: "Chiếc kẹp giấy nằm trên cạnh của hình vuông" 

Xem lời giải >>
Bài 4 :

Một nhân viên  kiểm tra chất lượng sản phẩm tại một nhà máy trong 20 ngày rồi ghi lại số phế phẩm của nhà máy và thu được kết quả như sau: 

Số phế phẩm

0

1

2

3

≥4

Số ngày

14

3

1

1

1

Tính xác suất thực nghiệm của các biến cố sau:

a) M: "Trong một ngày nhà máy đó không có phế phẩm"

b) N: "Trong một ngày nhà máy đó chỉ có 1 phế phẩm"

c) K: "Trong một ngày nhà máy đó có ít nhất 2 phế phẩm" 

Xem lời giải >>
Bài 5 :

Thống kê thời gian của 78 chương trình quảng cáo trên Đài truyền hình tỉnh X cho kết quả như sau:

Thời gian quảng cáo trong khoảng

Số chương trình quảng cáo

Từ 0 đến 19 giây

17

Từ 20 đến 39 giây

38

Từ 40 đến 59 giây

19

Trên  60 giây

4

 Tính xác suất thực nghiệm của các biến cố sau:

a) E: "Chương trình quảng cáo của Đài truyền hình tỉnh X kéo dài từ 20 đến 39 giây"

b) F: "Chương trình quảng cáo của Đài truyền hình tỉnh X kéo dài trên 1 phút"

c) G:" Chương trình quảng cáo của Đài truyền hình tỉnh X kéo dài trong khoảng từ 20 đến 59 giây"

Xem lời giải >>
Bài 6 :

Trong trò chơi "Xúc xắc may mắn" ở mỗi ván chơi, người chơi gieo đồng thời hai con xúc xắc và ghi lại tổng số chấm xuất hiện trên hai con xúc xắn. Một người chơi 80 ván và ghi lại kết quả trong bảng sau:

Tổng số chấm

2

3

4

5

6

7

8

9

10

11

12

Số ván

2

5

6

8

11

14

12

9

6

4

3

a) Giả sử người chơi thắng nếu tổng số chấm xuất hiện trên hai con xúc xắc là 5 hoặc 7. Tính xác suất thực nghiệm của biến cố E: "Người chơi thắng trong một ván chơi"

b) Giả sử người chơi thắng nếu tổng số chấm xuất hiện trên hai con xúc xắc từ 10 trở lên. Tính xác suất thực nghiệm của biến cố F: "Người chơi thắng trong một ván chơi"

Xem lời giải >>
Bài 7 :

Một túi đựng các viên bi giống hệt nhau, chỉ khác màu, trong đó có 5 viên bi màu xanh, 3 viên bi màu đỏ và 7 viên bi màu trắng. Bạn Việt lấy ngẫu nhiên một viên bi trong túi. Tính xác suất của các biến cố sau 

a) E: "Việt lấy được viên bi màu xanh"

b) F: "Việt lấy được viên bi màu đỏ"

c) G: "Việt lấy được viên bi màu trắng"

d) H: "Việt lấy được viên bi màu xanh hoặc màu đỏ"

e) K: "Việt không lấy được viên bi màu đỏ"

Xem lời giải >>
Bài 8 :

Trước khi Hà tung một đồng xu cân đối và đồng chất 100 lần, Thọ dự đoán sẽ có trên 70 lần xuất hiện mặt sấp còn Thúy lại dự đoán sẽ có ít hơn 70 lần xuất hiện mặt sấp. Theo em, bạn nào có khả năng dự đoán cao hơn? Vì sao?

Xem lời giải >>
Bài 9 :

Một hộp kín chứ 3 quả bóng xanh và 2 quả bóng đỏ có cùng kích thước và khối lượng An lấy ra ngẫu nhiên 1 quả bóng từ hộp, xem màu rồi trả lại hộp.

a) Tính tỉ số mô tả xác suất lí thuyết của biến cố “An lấy được bóng xanh”.

b) Sau khi lặp lại phép thử đó 100 lần, An ghi lại số lần mình lấy được bóng xanh sau 20; 40; 60; 80 và 100 lần lấy bóng như sau:

 

Tính các xác suất thực nghiệm của sự kiện “An lấy được bóng xanh” sau 20; 40; 60; 80 và 100 lần thử.

Xem lời giải >>
Bài 10 :

Phương gieo một con xúc xắc 120 lần và thống kê lại kết quả các lần gieo ở bảng sau:

 

Hãy tính xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” sau 120 lần thử trên.

Xem lời giải >>
Bài 11 :

Một hộp chứa các thẻ màu xanh và thr màu đỏ có kích thước và khối lượng như nhau. Thọ lấy ra ngẫu nhiên 1 thẻ từ hộp, xem màu rồi trả lại hộp. Lặp lại thử nghiệm đó 50 lần. Thọ thấy có 14 lần lấy được thẻ màu xanh. Xác suất thực nghiệm của biến cố “Lấy được thẻ màu đỏ” là

A. 0,14.

B. 0,28.

C. 0,72.

D. 0,86.

Xem lời giải >>
Bài 12 :

Tỉ lệ học sinh bị cận thị ở một trường trung học cơ sở là \(16\% \). Gặp ngẫu nhiên một học sinh của trường, xác suất học sinh đó không bị cận thị là

A. 0,16.

B. 0,94.

C. 0,84.

D. 0,5.

Xem lời giải >>
Bài 13 :

Tỉ lệ vận động viên đạt huy chương trong một đại hội thể thao là 21%. Gặp ngẫu nhiên một vận động viên dự đại hội. Tính xác suất của biến cố vận động viên ấy đạt huy chương.

Xem lời giải >>
Bài 14 :

Thảo tung hai đồng xu giống nhau 100 lần và ghi lại kết quả ở bảng sau:

 

Tính xác suất thực nghiệm của biến cố “Hai đồng xu đều xuất hiện mặt sấp sau 100 lần tung”.

Xem lời giải >>
Bài 15 :

Nếu tung một đồng xu 40 lần liên tiếp, có 19 lần xuất hiện mặt N thì xác suất thực nghiệm của biến cố “Mặt xuất hiện của đồng xu là mặt S” bằng bao nhiêu?

Xem lời giải >>
Bài 16 :

Gieo xúc xắc 30 lần liên tiếp, có 4 lần xuất hiện mặt 2 chấm. Tính xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là mặt 2 chấm”.

Xem lời giải >>
Bài 17 :

Mỗi hộp có 10 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số nguyên dương không vượt quá 10, hai thẻ khác nhau thì ghi hai số khác nhau. Lấy ngẫu nhiên một chiếc thẻ từ trong hộp, ghi lại số của thẻ lấy ra và bỏ lại thẻ đó vào hộp. Sau 40 lần lấy thẻ liên tiếp, thẻ ghi số 1 được lấy ra 3 lần. Tính xác suất thực nghiệm của biến cố “Thẻ lấy ra ghi số 1” trong trò chơi trên.

Xem lời giải >>
Bài 18 :

Tính xác suất thực nghiệm của biến cố “Mặt xuất hiện của đồng xu là mặt S” trong mỗi trường hợp sau:

a)      Tung một đồng xu 50 lần liên tiếp, có 27 lần xuất hiện mặt S;

b)     Tung một đồng xu 45 lần liên tiếp, có 24 lần xuất hiện mặt N.

Xem lời giải >>
Bài 19 :

Gieo một xúc xắc 30 lần liên tiếp, ghi lại mặt xuất hiện của xúc xắc sau mỗi lần gieo. Tính xác suất thực nghiệm của mỗi biến cố sau:

a)      “Mặt xuất hiện của xúc xắc là mặt 3 chấm”;

b)     “Mặt xuất hiện của xúc xắc là mặt 4 chấm”

Xem lời giải >>
Bài 20 :

Trong đợt phát động “Hiến máu cứu người- Cần lắm những tấm lòng”, có rất nhiều sinh viên thuộc các trường đại học ở Thành phố Hồ Chí Minh tình nguyện hiến máu.

Nhóm máu của \(300\) sinh viên đến trước được thống kê trong Bảng 7.9 dưới đây:

 

Chọn ngẫu nhiên một sinh viên trong số này. Tính xác suất thực nghiệm của biến cố “chọn được người có nhóm máu AB” trong số \(300\) sinh viên.

Xem lời giải >>
Bài 21 :

Mỗi xạ thủ muốn tham gia một cuộc thi nào đó đều phải luyện tập rất nhiều. Trong những lần luyện tập cuối, anh Hoàng thấy cứ bắn \(150\) viên đạn thì có khoảng từ \(138\) đến \(142\) viên trúng tâm bia.

a) Hỏi xác suất thực nghiệm bắn trúng tâm bia của anh Hoàng trong những lần tập luyện cuối xấp xỉ bằng bao nhiêu?

b) Từ kết quả tập luyện, hãy ước lượng xác suất bắn đạn trúng tâm bia của anh Hoàng.

Xem lời giải >>
Bài 22 :

Trong hộp có một số bút chì. Bảo rút ngẫu nhiên một bút, ghi lại màu của nó rồi bỏ lại vào hộp, và tiếp tục rút lần khác. Sau \(10\) lần thực hiện thí nghiệm này, Bảo rút được \(6\) bút đỏ và \(4\) bút xanh. Bảo kết luận: “Xác suất lấy được bút vàng bằng \(0,\) suy ra trong hộp không có bút màu vàng”. Em có đồng ý với ý kiến của Bảo không? Vì sao?

Xem lời giải >>
Bài 23 :

Anh Quang, một sinh viên y khoa, đã tiến hành tìm hiểu tác hại của thuốc lá đối với sức khỏe con người. Anh rút ngẫu nhiên \(500\) hồ sơ bệnh nhân ung thư phổi đang điều trị ở một số bệnh viện để nghiên cứu. Trong \(500\) hồ sơ rút ra, anh Quang thấy có \(442\) người đã từng nghiện thuốc lá.

a) Đối với hoạt động chọn ngẫu nhiên \(500\) bệnh nhân ung thư phổi mà anh Quang đã thực hiện, hãy tính xác suất thực nghiệm của các biến cố:

A: “Chọn đúng người có hút thuốc lá”;

B: “Chọn đúng người không hút thuốc lá”.

b) Hòa nói: “Nếu tiếp tục chọn thêm một người nữa trong số các bệnh nhân ung thư, chắc chắn là anh Quang sẽ chọn được người hút thuốc”.

Thuận nói: “Chưa chắc. Nhưng khả năng chọn cao hơn rất nhiều, gấp hơn khoảng \(9\) lần so với khả năng chọn được người không hút thuốc”.

Em đồng ý với ý kiến nào? Vì sao?

Xem lời giải >>
Bài 24 :

Anh Phúc đã khảo sát thời lượng quảng cáo trên ti vi (tính bằng giây) qua một số buổi phát lấy ngẫu nhiên và biểu diễn kết quả khảo sát bằng biểu đồ dưới đây:

 

Ước tính xác suất (lấy đến một chữ số thập phân) để tối hôm sau chương trình anh Phúc mở ra xem có thời gian quảng cáo kéo dài:

a) Từ \(21\) đến \(40\) giây;

b) Từ \(21\) đến \(60\) giây;

c) Trên một phút.

Xem lời giải >>
Bài 25 :

Viết ngẫu nhiên một số tự nhiên có hai chữ số nhỏ hơn 200.

a) Có bao nhiêu cách viết ngẫu nhiên một số tự nhiên như vậy?

b) Tính xác suất của mỗi biến cố “Số tự nhiên được viết ra là số tròn trăm”.

Xem lời giải >>