Đề bài

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE AM (E AM), CF AN (F AN).

EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác của góc MAN

Phương pháp giải

- Vẽ hình theo yêu cầu bài toán.

- Chứng minh ∆BME = ∆CNF để suy ra AE = AF.

- Chứng minh ∆AEO = ∆AFO. Suy ra \(\widehat {OAE} = \widehat {OAF}\) (hai góc tương ứng).

Vậy AO là tia phân giác của góc MAN.

Lời giải của GV Loigiaihay.com
EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác của góc MAN (ảnh 1)

Vì ∆ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\) suy ra \(\widehat {ABM} = \widehat {ACN}\).

Xét ∆ABM và ∆ACN có:

AB = AC (vì ∆ABC cân tại A)

\(\widehat {ABM} = \widehat {ACN}\) (chứng minh trên)

BM = CN (giả thiết)

Do đó ∆ABM = ∆ACN (c.g.c).

Suy ra \(\widehat {AMB} = \widehat {ANC}\) (hai góc tương ứng).

 Xét ∆BME và ∆CNF có:

\(\widehat {BEM} = \widehat {CFN} = 90^\circ \)

BM = CN (giả thiết)

\(\widehat {AMB} = \widehat {ANC}\) (chứng minh trên)

Do đó ∆BME = ∆CNF (cạnh huyền – góc nhọn).

Suy ra ME = NF (Hai cạnh tương ứng).

Mà AM = AN nên AE = AF.

Ta lại có \(\widehat {EBM} = \widehat {FCN}\) suy ra \(\widehat {OBC} = \widehat {OCB}\).

Do đó ∆OBC cân tại O từ đó OB = OC suy ra OE = OF.

Xét ∆AEO và ∆AFO có:

AE = AF (chứng minh trên)

\(\widehat {AEO} = \widehat {AFO} = 90^\circ \)

OE = OF (chứng minh trên)

Do đó ∆AEO = ∆AFO (c.g.c)

Suy ra \(\widehat {OAE} = \widehat {OAF}\) (hai góc tương ứng).

Vậy AO là tia phân giác của góc MAN.

Các bài tập cùng chuyên đề

Bài 1 :

Mỗi hình sau có các cặp tam giác vuông nào bằng nhau? Vì sao?

Xem lời giải >>
Bài 2 :

Cho đoạn thẳng AB, O là trung điểm AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax; By vuông góc với AB. Gọi C là một điểm thuộc D. Khi đó:

Xem lời giải >>
Bài 3 :

Trong mỗi hình sau (H.4.33) có các cặp tam giác vuông nào bằng nhau? Vì sao?

Xem lời giải >>
Bài 4 :

Cho AH và DK lần lượt là hai đường cao của tam giác ABC và DEF như Hình 4.39. Chứng minh rằng

a) Nếu AB = DE, BC = EF và AH = DK thì \(\Delta ABC = \Delta DEF;\)

b) Nếu AB = DE, AC = DF và AH = DK thì \(\Delta ABC = \Delta DEF\) 

Xem lời giải >>
Bài 5 :

Cho các điểm A, B, C, D, E, F như Hình 4.58.

a) Tìm ba cặp tam giác vuông bằng nhau và giải thích vì sao chúng bằng nhau.

b) Chứng minh \(\Delta ADE = \Delta ADF\).

Xem lời giải >>
Bài 6 :

Cho đường thẳng d đi qua trung điểm M của đoạn thẳng AB và không vuông góc với AB. Kẻ AP, BQ \(\left( {P \in d,Q \in d} \right)\)vuông góc với đường thẳng d (H 4.60). Chứng minh rằng:

a) AP = BQ

b)\(\Delta APB = \Delta BQA\).

Xem lời giải >>
Bài 7 :

Hai tam giác vuông bằng nhau khi và chỉ khi điều nào dưới đây xảy ra?

A. Một cạnh góc vuông và một góc nhọn của tam giác này bằng một cạnh góc vuông và một góc nhọn của tam giác kia.

B. Một cạnh góc vuông và góc nhọn kề cạnh ấy của tam giác này bằng một cạnh góc vuông và góc nhọn kề cạnh ấy của tam giác kia.

C. Hai góc nhọn của tam giác này bằng hai góc nhọn của tam giác kia.

D. Hai cạnh của tam giác này bằng hai cạnh của tam giác kia.

Xem lời giải >>
Bài 8 :

Trong mỗi hình sau có cặp hai tam giác vuông nào bằng nhau? Vì sao?

Xem lời giải >>
Bài 9 :

Tìm các tam giác vuông bằng nhau trong mỗi hình bên (Hình 19).

Xem lời giải >>
Bài 10 :

Hãy chỉ ra các cặp tam giác bằng nhau trong Hình 22 và cho biết chúng bằng nhau theo trường hợp nào.

Xem lời giải >>
Bài 11 :

Cho Hình 53AD = BC, IC = ID, các góc tại đỉnh C, D, H là góc vuông. Chứng minh:

a) IA = IB;                                                                       

b) IH là tia phân giác của góc AIB.

Xem lời giải >>
Bài 12 :

ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE AM (E AM), CF AN (F AN).

Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng.

Xem lời giải >>