Đề bài

Trong Hình 76, cho biết các tam giác ABDBCE là tam giác đều và A, B, C thẳng hàng. Chứng minh rằng:

 

a) AD // BEBD // CE;

b) \(\widehat {ABE} = \widehat {DBC} = 120^\circ \);

c) AE = CD.

Phương pháp giải

a) Ta chứng minh AD // BE BD // CE dựa vào các cặp góc bằng nhau ở vị trí đồng vị.

b) Chứng minh \(\widehat {ABE} = \widehat {DBC} = 120^\circ \) dựa vào số đo góc của ba điểm thẳng hàng là 180°.

c) Chứng minh AE = CD bằng cách chứng minh tam giác ABE bằng tam giác DBC

Lời giải của GV Loigiaihay.com

a)

Tam giác ABDBCE là tam giác đều nên \(\widehat {EBC} = \widehat {DAB} = 60^\circ \)

Vì A, B, C thẳng hàng nên \(\widehat {DAB}= \widehat {DAC}\) suy ra \(\widehat {EBC} = \widehat {DAB}\).

Mà góc EBC và góc DAC ở vị trí đồng vị nên AD // BE.

Tam giác ABDBCE là tam giác đều nên \(\widehat {DBA} = \widehat {ECB} = 60^\circ \)

Vì A, B, C thẳng hàng nên  \(\widehat {ECB}= \widehat {ECA}\) suy ra \(\widehat {DBA} = \widehat {ECB}\).

Mà góc DBA và góc ECA ở vị trí đồng vị nên BD // CE.

b) Ta có A, B, C thẳng hàng nên góc ABC bằng 180°. Mà \(\widehat {DBA} = \widehat {EBC} = 60^\circ  \Rightarrow \widehat {DBE} = 60^\circ \).

Vậy \(\widehat {ABE} = \widehat {DBC} = 120^\circ \) (\(\widehat {ABE} = \widehat {DBA} + \widehat {DBE};\widehat {DBC} = \widehat {DBE} + \widehat {EBC}\)).

c) Tam giác ABDBCE là tam giác đều 

\(\Rightarrow AB=AD, BE=BC\)

Xét hai tam giác ABEDBC có:

     AB = DB;

     \(\widehat {ABE} = \widehat {DBC} = 120^\circ \);

     BE = BC.

\(\Rightarrow \Delta ABE = \Delta DBC\) (c.g.c)

Do đó, AE = DC ( 2 cạnh tương ứng).

\(\widehat {ABE} = \widehat {DBC} = 120^\circ \)

Xem thêm : SGK Toán 7 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác MBC vuông tại M có \(\widehat B\) = 60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Xem lời giải >>
Bài 2 :

Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = {60^0}\). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng \(\Delta ABC\) là tam giác đều và \(BH = \dfrac{{AB}}{2}\)

Xem lời giải >>
Bài 3 :

Trong các câu sau đây, câu nào đúng?

A. Tam giác có ba cạnh bằng nhau là tam giác đều.

B. Tam giác có hai góc bằng nhau là tam giác đều.

C. Tam giác nhọn có hai cạnh bằng nhau là tam giác đều.

D. Tam giác vuông có một góc có số đo bằng 60 độ là tam giác đều.

Xem lời giải >>
Bài 4 :

Cho hình thang cân ABCD có đáy lớn AD đáy nhỏ BC thoả mãn AD = 4 cm và AB = BC = CD = 2 cm (H.4.62). Tính các góc của hình thang ABCD.

Xem lời giải >>
Bài 5 :

Cho điểm A nằm trên trung trực của đoạn thẳng BC sao cho \(\widehat {ABC} = {60^o}\). Chứng minh rằng CA = CB.

Xem lời giải >>
Bài 6 :

Cho tam giác MBC vuông tại M có \(\widehat B = {60^o}\). Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Xem lời giải >>
Bài 7 :

Tam giác ABC vuông tại đỉnh A và có \(\widehat B = {30^o}\). Chứng minh rằng BC = 2AC

Xem lời giải >>
Bài 8 :

Cho tam giác ABC cân tại A có góc B bằng \({60^o}\). Chứng minh rằng tam giác ABC đều.

Xem lời giải >>
Bài 9 :

Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13). Giải thích.

Xem lời giải >>
Bài 10 :

Tìm các số đo x, y trong Hình 140.

Xem lời giải >>