Đề bài

Trong không gian Oxyz, cho đường thẳng \(d\) đi qua điểm \(N( - 2;3;1)\), có vectơ chỉ phương \(\vec a = (3; - 4;5)\).

a) Viết phương trình chính tắc của đường thẳng \(d\).

b) Tìm điểm \(A\) thuộc \(d\) biết \(A\) có hoành độ bằng 4.

Phương pháp giải

a) Viết phương trình chính tắc của đường thẳng: Dựa vào phương trình tham số của đường thẳng và các tỉ số giữa tọa độ của điểm trên đường thẳng với tọa độ của điểm qua và các thành phần của vectơ chỉ phương.

b) Tìm điểm thuộc đường thẳng: Sử dụng điều kiện hoành độ của A để tìm tham số \(t\) trong phương trình tham số của đường thẳng. Từ đó tính ra tọa độ của điểm cần tìm.

Lời giải của GV Loigiaihay.com

a) Viết phương trình chính tắc của đường thẳng \(d\):

Phương trình tham số của đường thẳng \(d\) có dạng:

\(\left\{ {\begin{array}{*{20}{l}}{x =  - 2 + 3t}\\{y = 3 - 4t}\\{z = 1 + 5t}\end{array}} \right.\quad (t \in \mathbb{R})\)

Phương trình chính tắc của đường thẳng \(d\) là:

\(\frac{{x + 2}}{3} = \frac{{y - 3}}{{ - 4}} = \frac{{z - 1}}{5}\)

b) Tìm điểm \(A\) thuộc \(d\) biết hoành độ của A là 4:

Điểm \(A\) thuộc \(d\) có tọa độ \(A(4;y;z)\).

Suy ra: \(t = \frac{{4 + 2}}{3} = 2\)

\(y = 3 - 4.2 =  - 5\) và \(z = 1 + 5.2 = 11\)

Vậy điểm A có toạ độ là \(A(4; - 5;11)\)

Xem thêm : SGK Toán 12 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x + 1}}{3} = \frac{{y - 1}}{1} = \frac{{z - 2}}{5}\). Hãy chỉ ra một vectơ chỉ phương của \(\Delta \) và hai điểm thuộc \(\Delta \).

 
Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 2}}{1} = \frac{{z - 3}}{{ - 2}}\). Một vectơ chỉ phương của đường thẳng d có tọa độ là

A. \(\left( {1; - 2;3} \right)\).

B. \(\left( {2;1; - 2} \right)\).

C. \(\left( {2;1;2} \right)\).

D. \(\left( {1;2;3} \right)\).

Xem lời giải >>
Bài 3 :

Trong không gian Oxyz, phương trình đường thẳng d đi qua \(I\left( {2; - 1;1} \right)\) và nhận vectơ \(\overrightarrow u  = \left( {1;2; - 3} \right)\) làm một vectơ chỉ phương là

A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{1}\).

B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{{ - 3}}\).

C. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}\).

D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{1}\).

Xem lời giải >>
Bài 4 :

Trong không gian Oxyz, phương trình đường thẳng d đi qua \(I\left( {2;1; - 3} \right)\) và vuông góc với mặt phẳng (P): \(x - 2y + z - 3 = 0\) là

A. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 3}}{1}\).

B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 3}}{1}\).

C. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 3}}{1}\).

D. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\).

Xem lời giải >>
Bài 5 :

Viết phương trình chính tắc đường thẳng \(\Delta \), biết phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 3 - 5t\\z = 6 + 9t\end{array} \right.\) (t là tham số).

Xem lời giải >>
Bài 6 :

Viết phương trình chính tắc của đường thẳng OM biết M(a; b; c) với \(abc \ne 0\).

Xem lời giải >>
Bài 7 :

Đường thẳng đi qua điểm \(B\left( { - 1;3;6} \right)\) nhận \(\overrightarrow u  = \left( {2; - 3;8} \right)\) làm vectơ chỉ phương có phương trình chính tắc là:

A. \(\frac{{x - 1}}{2} = \frac{{y + 3}}{{ - 3}} = \frac{{z + 6}}{8}\).

B. \(\frac{{x + 1}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8}\).

C. \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 3}}{3} = \frac{{z - 6}}{8}\).

D. \(\frac{{x + 1}}{2} = \frac{{y - 3}}{3} = \frac{{z - 6}}{8}\).

Xem lời giải >>
Bài 8 :

Đường thẳng \(d:\frac{{x - 2}}{3} = \frac{{y - 3}}{6} = \frac{{z - 1}}{9}\) có một vectơ chỉ phương là:

A. \(\overrightarrow {{u_1}}  = \left( {2;3;1} \right)\).

B. \(\overrightarrow {{u_2}}  = \left( {6;3;9} \right)\).

C. \(\overrightarrow {{u_3}}  = \left( {3;9;6} \right)\).

D. \(\overrightarrow {{u_4}}  = \left( {1;2;3} \right)\).

Xem lời giải >>
Bài 9 :

Viết phương trình chính tắc của đường thẳng \(d\) đi qua điểm \({M_0}\left( {5;0; - 6} \right)\) và nhận \(\vec a = \left( {3;2; - 4} \right)\) làm vectơ chỉ phương.

Xem lời giải >>
Bài 10 :

Viết phương trình chính tắc của đường thẳng \(b\) trong mỗi trường hợp sau:

a) Đường thẳng \(b\) đi qua điểm \(M\left( {1; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {5; - 3;2} \right)\).

b) Đường thẳng \(b\) đi qua hai điểm \(A\left( {4;7;1} \right)\) và \(B\left( {6;1;5} \right)\).

Xem lời giải >>
Bài 11 :

Phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z =  - 2 + t\end{array} \right.\)?

A. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{1}\)

B. \(\frac{{x - 1}}{2} = \frac{y}{3} = \frac{{z + 2}}{1}\)

C. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{{ - 2}}\)

D. \(\frac{{x - 1}}{1} = \frac{y}{3} = \frac{{z + 2}}{{ - 2}}\)

Xem lời giải >>
Bài 12 :

Đường thẳng đi qua điểm \(B\left( {5; - 2;9} \right)\) nhận \(\overrightarrow u  = \left( { - 17;2; - 11} \right)\) làm vectơ chỉ phương có phương trình chính tắc là:

A. \(\frac{{x + 5}}{{ - 17}} = \frac{{y - 2}}{2} = \frac{{z + 9}}{{ - 11}}\).

B. \(\frac{{x - 17}}{5} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 11}}{9}\).

C. \(\frac{{x - 5}}{{ - 17}} = \frac{{y + 2}}{2} = \frac{{z - 9}}{{ - 11}}\).

D. \(\frac{{x + 17}}{5} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 11}}{9}\).

Xem lời giải >>
Bài 13 :

Đường thẳng \(\Delta \) có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - 2 - 21t\\y = 3 + 5t\\z =  - 6 - 19t\end{array} \right.\).

Phương trình chính tắc của \(\Delta \) là:

A. \(\frac{{x + 21}}{{ - 2}} = \frac{{y - 5}}{3} = \frac{{z + 19}}{{ - 6}}\).

B. \(\frac{{x + 2}}{{ - 21}} = \frac{{y - 3}}{5} = \frac{{z + 6}}{{ - 19}}\).

C. \(\frac{{x + 2}}{{21}} = \frac{{y - 3}}{5} = \frac{{z + 6}}{{19}}\).

D. \(\frac{{x - 2}}{{ - 21}} = \frac{{y + 3}}{5} = \frac{{z - 6}}{{ - 19}}\).

Xem lời giải >>
Bài 14 :

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x + 3y - z - 1 = 0\) và điểm \(A\left( {1;2; - 1} \right)\). Phương trình chính tắc của đường thẳng d đi qua A và vuông góc với mặt phẳng (P) là

A. \(\frac{{x + 1}}{2} = \frac{{y + 2}}{3} = \frac{{z - 1}}{{ - 1}}\).

B. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\).

C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 1}}\).

D. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{{ - 1}}\).

Xem lời giải >>
Bài 15 :

Lập phương trình chính tắc của đường thẳng \(d\) trong mỗi trường hợp sau:

a) \(d\) đi qua điểm \(M\left( {9;0;0} \right)\) và có vectơ chỉ phương \(\overrightarrow a  = \left( {5; - 11;4} \right)\);

b) \(d\) đi qua hai điểm \(A\left( {6;0; - 1} \right),B\left( {8;3;2} \right)\);

c) \(d\) có phương trình tham số \(\left\{ \begin{array}{l}x = 2t\\y =  - 1 + 7t\\z = 3 - 6t\end{array} \right.\).

Xem lời giải >>
Bài 16 :

Cho đường thẳng \(d\) có phương trình tham số: \(\left\{ \begin{array}{l}x = 1 + 4t\\y = 6t\\z =  - 2 + 2t\end{array} \right.\).

Phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d\)?

A. \(\frac{{x + 1}}{4} = \frac{y}{6} = \frac{{z - 2}}{2}\).

B. \(\frac{{x - 5}}{2} = \frac{{y - 6}}{3} = \frac{z}{1}\).

C. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{{ - 2}}\).

D. \(\frac{{x - 1}}{4} = \frac{y}{6} = \frac{{z + 2}}{2}\).

Xem lời giải >>
Bài 17 :

Đường thẳng đi qua điểm \(I\left( {1; - 1; - 1} \right)\) và nhận \(\overrightarrow u  = \left( { - 2;3; - 5} \right)\) làm vectơ chỉ phương có phương trình chính tắc là

A. \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 1}}{3} = \frac{{z - 1}}{{ - 5}}\).

B. \(\frac{{x - 1}}{{ - 2}} = \frac{{y + 1}}{3} = \frac{{z + 1}}{{ - 5}}\).

C. \(\frac{{x - 2}}{1} = \frac{{y + 3}}{{ - 1}} = \frac{{z - 5}}{{ - 1}}\).

D. \(\frac{{x + 2}}{1} = \frac{{y - 3}}{{ - 1}} = \frac{{z + 5}}{{ - 1}}\).

Xem lời giải >>
Bài 18 :

Cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = t\\y =  - 1 - 4t\\z = 6 + 6t\end{array} \right.\) và đường thẳng \({d_2}:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 2}}{{ - 5}}\). Viết phương trình chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {1; - 1;2} \right)\), đồng thời vuông góc với cả hai đường thẳng \({d_1},{d_2}\).

Xem lời giải >>
Bài 19 :

Cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z =  - 1\end{array} \right.\), điểm \(M\left( {1;2;1} \right)\) và mặt phẳng \(\left( P \right):2x + y - 2z - 1 = 0\).

Viết phương trình đường thẳng \(\Delta \) đi qua \(M\), song song với \(\left( P \right)\) và vuông góc với \({\rm{d}}\).

Xem lời giải >>
Bài 20 :

Trong không gian Oxyz, đường thẳng nào dưới đây đi qua điểm \(M\left( {6; - 2;1} \right)\) và có một vectơ chỉ phương \(\overrightarrow u  = \left( {3;1; - 1} \right)\)?

Xem lời giải >>
Bài 21 :

Trong không gian Oxyz cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( P \right):x + 3y - 2z - 1 = 0\). Phương trình đường thẳng đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) là

Xem lời giải >>
Bài 22 :

Trong không gian Oxyz cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( P \right):x + 3y - 2z - 1 = 0\). Phương trình đường thẳng đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) là

Xem lời giải >>
Bài 23 :

Trong không gian Oxyz cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( P \right):x + 3y - 2z - 1 = 0\). Phương trình đường thẳng đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) là

Xem lời giải >>
Bài 24 :

Trong không gian Oxyz cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( P \right):x + 3y - 2z - 1 = 0\). Phương trình đường thẳng đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) là

Xem lời giải >>
Bài 25 :

Trong không gian Oxyz cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( P \right):x + 3y - 2z - 1 = 0\). Phương trình đường thẳng đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) là

Xem lời giải >>
Bài 26 :

Trong không gian Oxyz, đường thẳng d có phương trình \(\frac{{x - 1}}{3} = \frac{{y + 2}}{2} = \frac{{z - 3}}{{ - 4}}\). Điểm nào sau đây không thuộc đường thẳng d?

Xem lời giải >>
Bài 27 :

Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + z – 1 = 0 và điểm M(1;1;2). Đường thẳng d đi qua M và vuông góc với mặt phẳng (P) có phương trình là

Xem lời giải >>
Bài 28 :

Phương trình đường thẳng đi qua điểm A(1;2;3) và vuông góc với hai đường thẳng \({d_1}\): \(\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) và \({d_2}\): \(\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\) có phương trình là

Xem lời giải >>
Bài 29 :

Phương trình đường thẳng đi qua điểm A(1;2;3) và vuông góc với hai đường thẳng \({d_1}\): \(\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) và \({d_2}\): \(\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\) có phương trình là

Xem lời giải >>
Bài 30 :

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;-3;2), B(6;1;-7), C(2;8;-1). Viết phương trình đường thẳng đi qua gốc tọa độ O và trọng tâm G của tam giác ABC.

Xem lời giải >>