Cho tam giác ABC cân tại A (\(\widehat A < {90^o}\)). Hai đường cao BE và CF cắt nhau tại H.
a) Chứng minh rẳng \(\Delta BFC = \Delta CEB\)
b) Chứng minh rằng \(\Delta AEH = \Delta AFH\)
c) Gọi I là trung điểm BC. Chứng minh rằng ba điểm A,H,I thẳng hàng.
a) Ta sử dụng định lí cạnh huyền – góc nhọn trong tam giác vuông
b) Từ câu a ta chứng minh 2 tam giác AHF = tam giác AHE nhờ những cạnh của 2 tam giác chứng minh được bằng nhau từ câu trên
c) Ta chứng minh AI và AH cùng là phân giác của góc A
a) Xét \(\Delta BFC\) và \(\Delta CEB\) có:
BC là cạnh chung
\(\widehat B = \widehat C\)(\(\Delta ABC\) cân tại A)
\(\widehat {BEC} = \widehat {CFB} = {90^o}\)
\( \Rightarrow \Delta BFC = \Delta CEB\)(cạnh huyền – góc nhọn )
b) Vì \(\Delta BFC = \Delta CEB \Rightarrow \) BF = EC (2 cạnh tương ứng)
Mà AB = AC (\(\Delta ABC\) cân tại A)
\( \Rightarrow \) AF = AE (AB – BF = AC – EC )
Xét \(\Delta AEH\) và \(\Delta AFH\)ta có :
AF = AE (chứng minh trên)
AH cạnh chung
\(\widehat {HFA} = \widehat {HEA} = {90^o}\)
\( \Rightarrow \Delta AEH = \Delta AFH\)(cạnh huyền - cạnh góc vuông)
c) Vì CF, BE là những đường cao của tam giác ABC và H là giao điểm của chúng
\( \Rightarrow \) H là trực tâm của tam giác ABC
\( \Rightarrow \) AH vuông góc với BC (1)
Xét \(\Delta AIC\) và \(\Delta AIB\) có :
IB = IC (I là trung điểm BC)
AI là cạnh chung
AB = AC ( tam giác ABC cân tại A)
\( \Rightarrow \Delta AIC = \Delta AIB(c - c - c)\)
\( \Rightarrow \widehat {AIC} = \widehat {AIB}\) (2 góc tương ứng) Mà chúng ở vị trí kề bù \( \Rightarrow \widehat {AIC} = \widehat {AIB} = {90^o}\)\( \Rightarrow AI \bot BC\) (2)
Từ (1) và (2) \( \Rightarrow \) A, H, I thẳng hàng.
Các bài tập cùng chuyên đề
Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.
Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD= 2 DC. Trên đường thẳng AC, lấy điểm E sao cho C là trung điểm của AE (H.9.53). Chứng minh rằng tam giác ABE cân tại A
Gợi ý D là trọng tâm của tam giác ABE, tam giác này có đường phân giác AD đồng thời là trung tuyến.
Cho tam giác nhọn ABC (AB < AC), vẽ đường cao AH. Đường trung trực của BC cắt AC tại M, cắt BC tại N.
a) Chứng minh rằng \(\widehat {BMN} = \widehat {HAC}\)
b) Kẻ \(MI \bot AH\)(I ∈ AH), gọi K là giao điểm của AH và BM. Chứng minh rằng I là trung điểm của AK.
Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Các điểm A, G, H, I, O phân biệt. Chứng minh rằng:
a) Nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng;
b) Nếu các điểm A, H, I cùng nằm trên một đường thẳng thì tam giác ABC cân tại A.