Đề bài

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.

Phương pháp giải

-Chứng minh \(\Delta ABD = \Delta ACD\left( {c - g - c} \right)\)

Lời giải của GV Loigiaihay.com

Từ A kẻ đường thẳng m vuông góc với BC tại trung điểm D của BC.

\( \Rightarrow \) AD là đường trung tuyến của BC.

Xét \(\Delta ABD\) và \(\Delta ACD\) có:

\(\begin{array}{l}\widehat {ADB} = \widehat {ADC} = {90^0}\\AD:chung\\BD = CD\left( {gt} \right)\\ \Rightarrow \Delta ABD = \Delta ACD\left( {c - g - c} \right)\end{array}\)

\( \Rightarrow AB = AC\)(2 cạnh tương ứng)

\( \Rightarrow \Delta ABC\) cân tại A (đpcm). 

Xem thêm : SGK Toán 7 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD= 2 DC. Trên đường thẳng AC, lấy điểm E sao cho C là trung điểm của AE (H.9.53). Chứng minh rằng tam giác ABE cân tại A

Gợi ý D là trọng tâm của tam giác ABE, tam giác này có đường phân giác AD đồng thời là trung tuyến.

Xem lời giải >>
Bài 2 :

Cho tam giác ABC cân tại A (\(\widehat A < {90^o}\)). Hai đường cao BE và CF cắt nhau tại H.

a) Chứng minh rẳng \(\Delta BFC = \Delta CEB\)

b) Chứng minh rằng \(\Delta AEH = \Delta AFH\)

c) Gọi I là trung điểm BC. Chứng minh rằng ba điểm A,H,I thẳng hàng.

Xem lời giải >>
Bài 3 :

Cho tam giác nhọn ABC (AB < AC), vẽ đường cao AH. Đường trung trực của BC cắt AC tại M, cắt BC tại N.

a) Chứng minh rằng \(\widehat {BMN} = \widehat {HAC}\)

b) Kẻ \(MI \bot AH\)(I ∈ AH), gọi K là giao điểm của AH và BM. Chứng minh rằng I là trung điểm của AK.

Xem lời giải >>
Bài 4 :

Cho tam giác ABCG là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Các điểm A, G, H, I, O phân biệt. Chứng minh rằng:

a) Nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng;

b) Nếu các điểm A, H, I cùng nằm trên một đường thẳng thì tam giác ABC cân tại A.

Xem lời giải >>