Đề bài

Tính độ dài \(AF\) và \(EF\) trong Hình 6.112.

 

Phương pháp giải

Áp dụng các trường hợp đồng dạng của tam giác và tính chất đường phân giác để tìm độ dài \(AF\) và \(EF\) .

Lời giải của GV Loigiaihay.com

Ta có:

 \(\begin{array}{l}AD = 10 - 5\\AE = 16 - 8 = 8\end{array}\)

Xét tam giác \(ABC\) và tam giác \(ADE\) , ta có:

 \(\widehat A\) là góc chung

 \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{1}{2}\)

=> \(\Delta ABC\) ∽ \(\Delta ADE\) (c-g-c)

Ta có tỉ lệ đồng dạng:

 \(\frac{{AD}}{{AB}} = \frac{{DE}}{{BC}} \Rightarrow \frac{{AD}}{{DE}} = \frac{{AB}}{{BC}} \\ \frac{{AD}}{{DE}} = \frac{{10}}{{14}} = \frac{5}{7}\)

Lại có:

 \(\widehat {ADF} = \widehat {FDE}\)

=> \(DF\) là tia phân giác của tam giác \(ADE\)

Áp dụng tính chất tia phân giác ta có:

 \(\frac{{AD}}{{DE}} = \frac{{AF}}{{FE}}\)

=> \(\frac{{AF}}{{FE}} = \frac{5}{7}\)

Mà \(AE = 8 = > AF = \frac{{10}}{3};FE = \frac{{14}}{3}\) 

Xem thêm : SGK Toán 8 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Trong hình 9.72, cho AH, HE, HF lần lượt là các đường cao của các tam giác ABC, AHB, AHC. Chứng minh rằng

a) ΔAEH ∽ ΔAHB 

b) ΔAFH ∽ ΔAHC 

c) ΔAFE ∽ ΔABC 

Xem lời giải >>
Bài 2 :

Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB
a) Chứng minh rằng ΔHDA ∽ ΔAHC 

b) Tính độ dài các đoạn thẳng HA, HB, HC, HD

Xem lời giải >>
Bài 3 :

Tính các độ dài x, y, z, t ở các hình 104a, 104b, 104c.

Xem lời giải >>