Đề bài

Cho tam giác \(ABC\) có \(AH\) là đường cao và \(A{H^2} = BH.CH\). Chứng minh rằng:

a) Tam giác \(ABC\) đồng dạng với tam giác \(HBA\)

b) Tam giác \(ABC\) vuông tại A.

c) Cho \(BH = \frac{5}{{13}}\), Tính tỉ số chu vi và tỉ số diện tích của \(\Delta ABH\) và \(\Delta ABC\)

Phương pháp giải

Nếu hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

Lời giải của GV Loigiaihay.com

a) Ta có:

\(\begin{array}{l}A{H^2} = BH.CH\\AH.AH = BH.CH\\\frac{{AH}}{{BH}} = \frac{{CH}}{{AH}}\end{array}\)

Xét tam giác \(ABH\) và tam giác \(CAH\), ta có:

\(\frac{{AH}}{{BH}} = \frac{{CH}}{{AH}}\)

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \) (do \(AH\) là đường cao)

=> \(\Delta ABH\)∽\(\Delta CAH\) (cạnh góc vuông-góc vuông)

b) Vì \(\Delta ABH\)∽\(\Delta CAH\), ta có tỉ lệ:

\(A{H^2} = BH.CH\)

Áp dụng hệ thức lượng trong tam giác vuông, suy ra tam giác \(ABC\) là tam giác vuông tại \(A\).

c) Ta có:

 \(\begin{array}{l}BH = \frac{5}{{13}}AB\\ \Rightarrow \frac{{BH}}{{AB}} = \frac{5}{{13}}\end{array}\)

Dựa vào tỉ lệ trên ta có \(BH = 5;AB = 13\)

\( \Rightarrow AH = \sqrt {A{B^2} - B{H^2}}  = \sqrt {{{13}^2} - {5^2}}  = 12\)

Chu vi của tam giác \(ABH\) là: \(AB + BH + HA = 13 + 5 + 12 = 30\)

Diện tích của tam giác \(ABH\) là: \(\frac{1}{2}AH.BH = \frac{1}{2}.12.5 = 30\)

Xét tam giác \(ABC\) và tam giác \(HBA\), ta có:

\(\widehat A = \widehat {BHA} = 90^\circ \)

\(\widehat B\) là góc chung

=> \(\Delta ABC\)∽\(\Delta HBA\) (góc nhọn-góc vuông)

Ta có tỉ lệ:

\(\begin{array}{l}\frac{{AB}}{{BC}} = \frac{{AH}}{{AC}} = \frac{{HB}}{{AB}}\\\frac{{13}}{{BC}} = \frac{{12}}{{AC}} = \frac{5}{{13}}\\ \Rightarrow BC = 33,8;AC = 31,2\end{array}\)

Chu vi của tam giác \(ABC\) là: \(AB + BC + AC = 13 + 33,8 + 31,2 = 78\)

Diện tích của tam giác \(ABC\) là: \(\frac{1}{2}.AC.AB = \frac{1}{2}.31,2.13 = 202,8\)

Tỉ số chu vi của \(\Delta ABH\) và \(\Delta ABC\) là: \(\frac{{30}}{{78}} = \frac{5}{{13}}\)

Tỉ số diện tích của \(\Delta ABH\) và \(\Delta ABC\) là: \(\frac{{30}}{{202,8}} = \frac{{25}}{{169}}\)

Xem thêm : SGK Toán 8 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Các tam giác vuông AHB và A'H'B' mô tả hai con dốc có chiều dài lần lượt là AB=13m, A′B′=6,5m và độ cao lần lượt là BH=5m, B′H′=2,5m. Độ dốc của hai con dốc lần lượt được tính bởi số đo các góc HAB và H'A'B'

- Nhận xét về hai đại lượng \(\frac{{A'H'}}{{AB}} = \frac{{B'H'}}{{BH}}\)

- Dùng định lí Pythagore để tính AH và A'H'

- So sánh các đại lượng \(\frac{{A'H'}}{{AH}} = \frac{{B'H'}}{{BH}}\)

- Hai tam giác vuông A'H'B' và AHB có đồng dạng không

Xem lời giải >>
Bài 2 :

Cho hai tam giác ABC và A’B’C’ có \(\widehat {A'} = \widehat A = 90^\circ ,\,\,\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) (Hình 72). Chứng minh \(\Delta A'B'C' \backsim \Delta ABC\)

Xem lời giải >>
Bài 3 :

Cho hai tam giác ABC và A’B’C’ lần lượt vuông tại A và A’ sao cho \(\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\). Chứng minh \(\widehat B = \widehat {B'}\).

Xem lời giải >>
Bài 4 :

Cho Hình 76, biết \(AB = 4,\,\,BC = 3,\,\,BE = 2,\,\,BD = 6\). Chứng minh:

a) \(\Delta ABD \backsim \Delta EBC\)

b) \(\widehat {DAB} = \widehat {DEG}\)

c) Tam giác DGE vuông

Xem lời giải >>
Bài 5 :

Cho Hình 77, chứng minh

a) \(\widehat {ABC} = \widehat {BED}\)

b) \(BC \bot BE\)

 

Hình 77

Xem lời giải >>
Bài 6 :

Cho Hình78, biết \(A{H^2} = BH.CH\). Chứng minh:

a)      \(\Delta HAB \backsim \Delta HCA\)

b)     Tam giác ABC vuông tại A.

Xem lời giải >>
Bài 7 :

Trong Hình 6.63, hai đường ram dốc \(AB\) và \(A'B'\) có cùng tỉ số chiều cao và chiều dài \(\frac{{BH}}{{AH}} = \frac{{B'H'}}{{A'H'}}.\) Em hãy giải thích vì sao \(\widehat A = \widehat {A'}.\)

Xem lời giải >>