Đề bài

Cho hai tam giác ABC và A’B’C’ lần lượt vuông tại A và A’ sao cho \(\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\). Chứng minh \(\widehat B = \widehat {B'}\).

Phương pháp giải

- Từ tỉ lệ đã cho, suy ra tỉ lệ để chứng minh hai tam giác ABC và A’B’C’ đồng dạng theo trường hợp đồng dạng thứ hai.

- Suy ra hai góc bằng nhau theo định nghĩa tam giác đồng dạng.

Lời giải của GV Loigiaihay.com

Ta có: \(\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}} \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}}\)

Hai tam giác ABC và A’B’C’ lần lượt vuông tại A và A’ nên \(\widehat {A'} = \widehat A = 90^\circ \).

Xét tam giác ABC và tam giác A’B’C’ có:

\(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}}\) và \(\widehat {A'} = \widehat A\)

\( \Rightarrow \Delta ABC \backsim \Delta A'B'C'\) (c-g-c)

\( \Rightarrow \widehat B = \widehat {B'}\).

Xem thêm : SGK Toán 8 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Các tam giác vuông AHB và A'H'B' mô tả hai con dốc có chiều dài lần lượt là AB=13m, A′B′=6,5m và độ cao lần lượt là BH=5m, B′H′=2,5m. Độ dốc của hai con dốc lần lượt được tính bởi số đo các góc HAB và H'A'B'

- Nhận xét về hai đại lượng \(\frac{{A'H'}}{{AB}} = \frac{{B'H'}}{{BH}}\)

- Dùng định lí Pythagore để tính AH và A'H'

- So sánh các đại lượng \(\frac{{A'H'}}{{AH}} = \frac{{B'H'}}{{BH}}\)

- Hai tam giác vuông A'H'B' và AHB có đồng dạng không

Xem lời giải >>
Bài 2 :

Cho hai tam giác ABC và A’B’C’ có \(\widehat {A'} = \widehat A = 90^\circ ,\,\,\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) (Hình 72). Chứng minh \(\Delta A'B'C' \backsim \Delta ABC\)

Xem lời giải >>
Bài 3 :

Cho Hình 76, biết \(AB = 4,\,\,BC = 3,\,\,BE = 2,\,\,BD = 6\). Chứng minh:

a) \(\Delta ABD \backsim \Delta EBC\)

b) \(\widehat {DAB} = \widehat {DEG}\)

c) Tam giác DGE vuông

Xem lời giải >>
Bài 4 :

Cho Hình 77, chứng minh

a) \(\widehat {ABC} = \widehat {BED}\)

b) \(BC \bot BE\)

 

Hình 77

Xem lời giải >>
Bài 5 :

Cho Hình78, biết \(A{H^2} = BH.CH\). Chứng minh:

a)      \(\Delta HAB \backsim \Delta HCA\)

b)     Tam giác ABC vuông tại A.

Xem lời giải >>
Bài 6 :

Trong Hình 6.63, hai đường ram dốc \(AB\) và \(A'B'\) có cùng tỉ số chiều cao và chiều dài \(\frac{{BH}}{{AH}} = \frac{{B'H'}}{{A'H'}}.\) Em hãy giải thích vì sao \(\widehat A = \widehat {A'}.\)

Xem lời giải >>
Bài 7 :

Cho tam giác \(ABC\) có \(AH\) là đường cao và \(A{H^2} = BH.CH\). Chứng minh rằng:

a) Tam giác \(ABC\) đồng dạng với tam giác \(HBA\)

b) Tam giác \(ABC\) vuông tại A.

c) Cho \(BH = \frac{5}{{13}}\), Tính tỉ số chu vi và tỉ số diện tích của \(\Delta ABH\) và \(\Delta ABC\)

Xem lời giải >>