Đề bài

Quan sát Hình 65 và chỉ ra những cặp tam giác đồng dạng:

Phương pháp giải

Dựa vào trường hợp đồng dạng thứ nhất của tam giác để tìm ra các cặp tam giác đồng dạng.

Lời giải của GV Loigiaihay.com

Xét tam giác ABC và tam giác IKH có:

\(\frac{{AB}}{{IK}} = \frac{{AC}}{{IH}} = \frac{{BC}}{{KH}} = \frac{1}{2}\)

\( \Rightarrow \Delta ABC \backsim\Delta IKH\) (c-c-c)

Xét tam giác DEG và tam giác MNP có:

\(\frac{{DE}}{{MN}} = \frac{{DG}}{{MP}} = \frac{{EG}}{{KH}} = \frac{1}{2}\)

\( \Rightarrow \Delta DEG \backsim\Delta MNP\) (c-c-c)

Xem thêm : SGK Toán 8 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Những cặp tam giác nào dưới đây (hình 9.13) là đồng dạng? (các kích thước được tính theo đơn vị centimét). Viết đúng kí hiệu đồng dạng.

Xem lời giải >>
Bài 2 :

Cho tam giác ABC có chu vi bằng 18 cm và tam giác DEF có chu vi bằng 27cm. Biết rằng AB=4cm, BC=6cm, DE=6cm, FD=12cm. Chứng minh  ΔABC ∽ ΔDEF

Xem lời giải >>
Bài 3 :

Trở lại tình huống mở đầu. Em hãy vẽ một tam giác có ba cạnh tỉ lệ với ba cạnh của tam giác tạo bởi ba đỉnh là trái bóng và hai chân cột gôn. Từ đó tính góc sút bằng góc tương ứng của tam giác vừa vẽ được.

Xem lời giải >>
Bài 4 :

Cho hai tam giác ABC và A'B'C' có độ dài các cạnh (theo đơn vị cm) như Hình 9.15. Biết rằng \(\widehat A = \widehat {A'} = 60^0\)

- So sánh các tỉ số \(\frac{{A'B'}}{{AB}}{;^{}}\frac{{A'C'}}{{AC}}\)

- Dùng thước có vạch chia đo độ dài BC, B'C' và tính tỉ số \( \frac {B′C′} {BC} \)

- Theo em, tam giác A'B'C' có đồng dạng với tam giác ABC không? Nếu có thì tỉ số đồng dạng là bao nhiêu?

Xem lời giải >>
Bài 5 :

Cho hai tam giác đồng dạng. Tam giác thứ nhất có độ dài ba cạnh là 4cm, 8cm và 10cm. Tam giác thứ hai có chu vi là 33cm. Độ dài ba cạnh của tam giác thứ hai là bộ ba nào sau đây?

a) 6cm, 12cm, 15cm

b) 8cm, 16cm, 20cm

c) 6cm, 9cm, 18cm

d) 8cm, 10cm, 15cm

Xem lời giải >>
Bài 6 :

Cho AM, BN, CP là các đường trung tuyến của tam giác ABC. Cho A'M', B'N', C'P' là các đường trung tuyến của tam giác A'B'C'. Biết rằng ΔA’B’C’ ∽ ΔABC 

Chứng minh rằng \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}} = \frac{{C'P'}}{{CP}}\)

Xem lời giải >>
Bài 7 :

Các trường hợp đồng dạng của hai tam giác có điều gì khác với các trường hợp bằng nhau của hai tam giác?

Xem lời giải >>
Bài 8 :

Cho tam giác \(ABC\) và tam giác \(A'B'C'\) có các kích thước như Hình 1. Trên cạnh \(AB\) và \(AC\) của tam giác \(ABC\) lần lượt lấy hai điểm \(M,N\) sao cho \(AM = 2cm,AN = 3cm\).

a) So sánh các tỉ số \(\frac{{A'B'}}{{AB}},\frac{{A'C'}}{{AC}},\frac{{B'C'}}{{BC}}\).

b) Tính độ dài đoạn thẳng \(MN\).

c) Em có nhận xét gì về mối liên hệ giữa các tam giác \(ABC,AMN\) và \(A'B'C'\)?

 

Xem lời giải >>
Bài 9 :

Tìm trong Hình 4 các cặp tam giác đồng dạng

Xem lời giải >>
Bài 10 :

a) Tam giác \(AFE\) và \(MNG\) ở Hình 14 có đồng dạng với nhau không? Vì sao?

b) Biết tam giác \(AFE\) có chu vi bằng 15 cm. Tính chu vi tam giác MNG.

 

Xem lời giải >>
Bài 11 :

Cho hai tam giác vuông \(ABC\) và \(DEF\) có các kích thước như Hình 4.

a) Hãy tính độ dài cạnh \(AC\) và \(DF\).

b) So sánh các tỉ số \(\frac{{AB}}{{DE}};\frac{{AC}}{{DF}}\) và \(\frac{{BC}}{{EF}}\).

c) Dự đoán sự đồng dạng của hai tam giác\(ABC\) và \(DEF\).

 

Xem lời giải >>
Bài 12 :

Cho tam giác ABC có trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của AG, BG, CG. Chứng minh \(\Delta A'B'C' \backsim\Delta ABC\).

Xem lời giải >>
Bài 13 :

Cho hai tam giác ABC và MNP có \(AB = 2,BC = 5,CA = 6,MN = 4,NP = 10,PM = 12\).

Hãy viết các cặp góc tương ứng bằng nhau của hai tam giác trên và giải thích kết quả.

Xem lời giải >>
Bài 14 :

Bác Hùng vẽ bản đồ trong đó dùng ba đỉnh A, B, C của tam giác ABC lần lượt mô tả ba vị trí M, N, P trong thực tiễn. Bác Duy cũng vẽ một bản đồ, trong đó dùng ba đỉnh A', B', C' của tam giác A'B'C' lần lượt mô tả ba vị trí M, N, P đó. Tỉ lệ bản đồ mà bác Hùng và bác Duy vẽ lần lượt là 1 : 1 000 000 và 1 : 500 000. Chứng minh \(\Delta A'B'C'\; \backsim\Delta ABC\) và tính tỉ số đồng dạng. 

Xem lời giải >>
Bài 15 :

Cho tam giác ABC và điểm O nằm trong tam giác. Các điểm M, N, P lần lượt thuộc các tia OA, OB, OC sao cho \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{{OC}}{{OP}} = \frac{2}{3}\). Chứng minh \(\Delta ABC \backsim\Delta MNP\).

Xem lời giải >>
Bài 16 :

Bạn Hoa vẽ trên giấy một tam giác ABC và đoạn thẳng MN với các kích thước như Hình 66. Bạn Hoa đố bạn Thanh vẽ điểm P thỏa mãn \(\widehat {PMN} = \widehat {ACB},\,\,\widehat {PNM} = \widehat {BAC}\) mà không sử dụng thước đo góc. Em hãy giúp bạn Thanh sử dụng thước thẳng (có chia khoảng milimét) và compa để vẽ điểm P và giải thích kết quả tìm được.

Xem lời giải >>
Bài 17 :

Cho các hình bình hành ABCD và BMNP như ở Hình 67. Chứng minh:

a) \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\)

b)  \( \Delta{MNP} \backsim \Delta{CBA}\)

Xem lời giải >>
Bài 18 :

Chỉ ra các cặp tam giác đồng dạng trong Hình 6.55. Viết kí hiệu về sự đồng dạng của chúng và xác định tỉ số đồng dạng.

Xem lời giải >>
Bài 19 :

Trên bản vẽ thiết kế mặt tiền ngôi nhà ở Hình 5.65b, khoảng cách thực tế giữa các đỉnh \(A',B',C'\) của mái nhà là \(A'B' = A'C' = 10\,cm,B'C' = 16\,cm.\) Trên thực tế, mái nhà được xây dựng có kích thước \(AB = AC = 5\,m\) và \(BC = 8\,m\) (Hình 5.56a). Hỏi mặt tiền của mái nhà có được xây dựng đúng với hình dạng như được thiết kế không?

Xem lời giải >>
Bài 20 :

Tam giác \(ABC\) có độ dài ba cạnh là \(AB = 12cm,BC = 15cm\) và \(AC = 18cm.\) Hãy vẽ tam giác \(MNP\) đồng dạng với tam giác \(ABC\) theo tỉ số đồng dạng \(k\) với:

a) \(k = \frac{1}{2};\)

b) \(k = \frac{1}{3}.\)

Xem lời giải >>
Bài 21 :

Chứng minh rằng hai tam giác cân có cùng cạnh bên bằng \(\frac{4}{3}\) cạnh đáy thì đồng dạng với nhau.

Xem lời giải >>
Bài 22 :

Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 9cm,AC = 12cm\) và \(\Delta DEF\) vuông tại \(D\) có \(DE = 6cm,\,EF = 10cm.\) Chứng minh rằng \(\Delta ABC ∽ \Delta DEF.\)

Xem lời giải >>
Bài 23 :

Trong Hình 6.57, độ dài cạnh mỗi ô vuông lớn là \(5\) đơn vị. Tính độ dài các cạnh của \(\Delta ABC,\Delta DEF,\Delta GHI\) và cho biết các tam giác nào đồng dạng với nhau. Viết kí hiệu của sự đồng dạng đó và xác định tỉ số đồng dạng.

Xem lời giải >>