Phần không tô đậm (không kể biên) trong hình vẽ sau biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình cho dưới đây?
\(\left\{ {\begin{array}{*{20}{c}}{x - y \ge 0}\\{2x - y \ge 1}\end{array}} \right.\)
\(\left\{ {\begin{array}{*{20}{c}}{x - y > 0}\\{2x - y > 1}\end{array}} \right.\)
\(\left\{ {\begin{array}{*{20}{c}}{x - y < 0}\\{2x - y > 1}\end{array}} \right.\)
\(\left\{ {\begin{array}{*{20}{c}}{x - y < 0}\\{2x - y < 1}\end{array}} \right.\)
Xét miền nghiệm có chứa biên hay không.
Thay tọa độ của điểm bất kì vào hệ bất phương trình xem có thỏa mãn không.
Dùng phương pháp loại trừ.
Do miền nghiệm không chứa biên nên ta loại đáp án A.
Lấy điểm M(0;1) không thuộc miền nghiệm của cả hai bất phương trình trong hệ bất phương trình, thay tọa độ điểm M vào đáp án B, C, D, nếu không thỏa mãn cả hai bất phương trình trong hệ thì đáp án đúng.
Xét đáp án B, ta thấy \(\left\{ {\begin{array}{*{20}{c}}{0 - 1 = - 1 > 0}\\{2.0 - 1 = 1 > 1}\end{array}} \right.\) không thỏa mãn cả hai bất phương trình. Chọn B.
Xét đáp án C, ta thấy \(\left\{ {\begin{array}{*{20}{c}}{0 - 1 = - 1 < 0}\\{2.0 - 1 = 1 > 1}\end{array}} \right.\) thỏa mãn một bất phương trình. Loại C.
Xét đáp án D, ta thấy \(\left\{ {\begin{array}{*{20}{c}}{0 - 1 = - 1 < 0}\\{2.0 - 1 = 1 < 1}\end{array}} \right.\) thỏa mãn một bất phương trình. Loại D.
Đáp án : B
Các bài tập cùng chuyên đề
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + 2(y + 1) - 4y \le 2(x + 1) - 5y\\x + y \ge 0\end{array} \right.\) không chứa điểm có tọa độ:
Phần không gạch chéo (không kể bờ d) trong hình dưới đây biểu diễn miền nghiệm của bất phương trình nào?
Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ: \(\left\{ \begin{array}{l}x \ge 0\\y > 0\\x + y \le 100\\2x + y < 120\end{array} \right.\)
Cho đường thẳng d: x+y=150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt hai trục tọa độ Ox và Oy tại hai điểm A và B.
a) Xác định miền nghiệm \({D_1},{D_2},{D_3}\) của các bất phương trình tương ứng \(x \ge 0;y \ge 0\) và \(x + y \le 150\).
b) Miền tam giác OAB (H.2.5) có phải là giao điểm của các miền \({D_1},{D_2}\) và \({D_3}\) hay không?
c) Lấy một điểm trong tam giác OAB (chẳng hạn điểm (1;2)) hoặc một điểm trên cạnh nào đó của tam giác OAB (chẳng hạn điểm (1;149)) và kiểm tra xem tọa độ của các điểm đó có phải là nghiệm của hệ bất phương trình sau hay không:
\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x \ge 0\\x + y > 5\\x - y > 0\end{array} \right.\)
b) \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 4\end{array} \right.\)
a) \(\left\{ \begin{array}{l}y - x < - 1\\x > 0\\y < 0\end{array} \right.\)
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y < - 3\\2y \ge - 4\end{array} \right.\). Điểm nào sau đây thuộc miền nghiệm của hệ đã cho?
A. (0;0)
B. (-2;1)
C. (3;-1)
D. (-3;1)
Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + y < 1\\2x - y \ge 3\end{array} \right.\) trên mặt phẳng tọa độ
Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}y - 2x \le 2\\y \le 4\\x \le 5\\x + y \ge - 1\end{array} \right.\) trên mặt phẳng tọa độ.
Từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F\left( {x;y} \right) = - x - y\) với \(\left( {x;y} \right)\) thỏa mãn hệ trên.
Biểu diễn miền nghiệm của hệ bất phương trình sau: \(\left\{ \begin{array}{l}3x - y > - 3\\ - 2x + 3y < 6\\2x + y > - 4\end{array} \right.\)
Cho hệ bất phương trình sau: \(\left\{ \begin{array}{l}x - 2y \ge - 2\\7x - 4y \le 16\\2x + y \ge - 4\end{array} \right.\)
a) Trong cùng mặt phẳng toạ độ Oxy, biểu diễn miền nghiệm của mỗi bất phương trình
trong hệ bất phương trình bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.
b) Tìm miền nghiệm của hệ bất phương trình đã cho.
Biểu diễn miền nghiệm của hệ bất phương trình:
a) \(\left\{ \begin{array}{l}x + 2y < - 4\\y \ge x + 5\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x - 2y > 8\\x \ge 0\\y \le 0\end{array} \right.\)
Biểu diễn miền nghiệm của hệ bất phương trình:
a) \(\left\{ \begin{array}{l}2x - 3y < 6\\2x + y < 2\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x + 10y \le 20\\x - y \le 4\\x \ge - 2\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - 2y \le 5\\x + y \ge 2\\x \ge 0\\y \le 3\end{array} \right.\)
Miền không bị gạch ở mỗi Hình 12a, 12b là miền nghiệm của hệ bất phương trình nào cho ở dưới đây?
a) \(\left\{ \begin{array}{l}x + y \le 2\\x \ge - 3\\y \ge - 1\end{array} \right.\)
b) \(\left\{ \begin{array}{l}y \le x\\x \le 0\\y \ge - 3\end{array} \right.\)
c) \(\left\{ \begin{array}{l}y \ge - x + 1\\x \le 2\\y \le 1\end{array} \right.\)
Biểu diễn miền nghiệm của hệ bất phương trình: \(\left\{ \begin{array}{l}x + y \le 8\\2x + 3y \le 18\\x \ge 0\\y \ge 0\end{array} \right.\)
Cho hệ bất phương trình: \(\left\{ \begin{array}{l}x + y - 3 \le 0\\ - 2x + y + 3 \ge 0\end{array} \right.\)
Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho?
Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau:
a) \(\left\{ \begin{array}{l}x + y - 3 \ge 0\\x \ge 0\\y \ge 0\end{array} \right.\)
b) \(\left\{ \begin{array}{l}x - 2y < 0\\x + 3y > - 2\\y - x < 3\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x \ge 1\\x \le 4\\x + y - 5 \le 0\\y \ge 0\end{array} \right.\)
Biểu diễn miền nghiệm của hệ bất phương trình sau trên mặt phẳng tọa độ Oxy:
\(\left\{ \begin{array}{l}x - 2y > 0\\x + 3y < 3\end{array} \right.\)
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 3y - 2 \ge 0}\\{2x + y + 1 \le 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình đã cho?
Phần không tô đậm (không kể biên) trong hình vẽ sau biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình cho dưới đây?
Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{3x + y \ge 9}\\{x \ge y - 3}\\{2y \ge 8 - x}\\{y \le 6}\end{array}} \right.\) chứa điểm nào trong các điểm sau đây?
Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\) chứa điểm nào trong các điểm sau đây?
Miền tam giác (kể cả ba cạnh AB, BC, CA) trong hình vẽ sau biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình cho dưới đây?
Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ:
a) \(\left\{ {\begin{array}{*{20}{c}}{x \ge - 1}\\{y \ge 0}\\{x + y \le 4}\end{array}} \right.\)
b) \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{y > 0}\\{x - y - 4 < 0}\end{array}} \right.\)
c) \(\left\{ {\begin{array}{*{20}{c}}{y \le 3}\\{x \le 3}\\{x \ge - 1}\\{y \ge - 2}\end{array}} \right.\)
Điểm nào sau đây thuộc miền nghiệm của bất phương trình \(2x + 5y \le 10?\)
A. \(\left( {5;2} \right).\)
B. \(\left( { - 1;4} \right).\)
C. \(\left( {2;1} \right).\)
D. \(\left( { - 5;6} \right).\)
Cặp số nào dưới đây là nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 2}\\{x - 2y \ge 4}\\{x > 0}\end{array}\,\,?} \right.\)
A. \(\left( { - 1;2} \right).\)
B. \(\left( { - 2; - 4} \right).\)
C. \(\left( {0;1} \right).\)
D. \(\left( {2;4} \right).\)
Điểm nào dưới đây thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - x + y \le 2}\\{x - 2y \ge 1}\\{y \le 0}\end{array}\,\,?} \right.\)
A. \(\left( { - 3;2} \right).\)
B. \(\left( {0;1} \right).\)
C. \(\left( {4; - 1} \right).\)
D. \(\left( { - 2;2} \right).\)
Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác \(ABC\) (miền không bị gạch)?
A. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x - y \ge 1}\\{x \ge 0}\end{array}.} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x - y \le 1}\\{x \ge 0}\end{array}} \right..\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge - 1}\\{x + y \ge - 1}\\{x \ge 0}\end{array}.} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge - 1}\\{x + y \ge - 1}\\{y \ge 0}\end{array}.} \right.\)
Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge - 1}\\{x + y \le 0}\\{y \ge 0}\end{array}} \right.\) là:
A. Một nửa mặt phẳng.
B. Miền tam giác.
C. Miền tứ giác.
D. Miền ngũ giác.