Một người đo chiều cao của một tòa nhà nhờ một cọc chôn xuống đất, cọc cao 3m và đặt cách xa tòa nhà 27m. Sau khi người ấy lùi xa cái cọc 1,2m thì nhìn thấy đầu cọc và đỉnh tòa nhà cùng năm trên một đường thẳng. Hỏi tòa nhà cao bao nhiêu mét, biết rằng khoảng cách từ chân đến mắt người ấy là 1,5m.
Sử dụng các trường hợp đồng dạng của tam giác vuông và tính chất tam giác đồng dạng.
Giả sử, ta biểu diễn người quan sát, cái cọc, tòa nhà có dạng như hình vẽ.
Chiều cao người quan sát là \(CB = 1,5m\); chiều cao cái cọc là \(HF = 3m\); khoảng cách từ người đến cọc là \(HB = 1,2m\); khoảng cách từ tòa nhà đến cọc là \(AH = 27m\). Chiều cao tòa nhà là \(AE\).
Vì tứ giác \(GHBC\) là hình chữ nhật nên \(GC = HB = 1,2m\); Vì tứ giác \(GHAD\) là hình chữ nhật nên \(AH = DG = 27m;GH = AD = 1,5m\).
Chiều dài đoạn \(CD\) là: \(DC = DG + GC = 27 + 1,2 = 28,2m\).
Độ dài đoạn \(GF\) là: \(GF = FH - GH = 3 - 1,5 = 1,5m\)
Xét \(\Delta DEC\) và \(\Delta GFC\) có:
\(\widehat C\) chung
\(\widehat {EDC} = \widehat {FGC} = 90^\circ \)
Do đó, \(\Delta DEC\backsim\Delta GFC\) (g.g)
Vì \(\Delta DEC\backsim\Delta GFC\) nên \(\frac{{DC}}{{GC}} = \frac{{DE}}{{GF}}\) (các cặp cạnh tương ứng)
Thay số, \(\frac{{28,2}}{{1,2}} = \frac{{DE}}{{1,5}} \Rightarrow DE = \frac{{28,2.1,5}}{{1,2}} = 35,25m\)
Chiều cao của tòa nhà là:
\(AD + DE = 35,25 + 1,5 = 36,75m\)
Vậy chiều cao tòa nhà là 36,75m.
Các bài tập cùng chuyên đề
Hãy chỉ ra hai cặp tam giác vuông đồng dạng có trong hình 9.48:
Điều kiện nào dưới đây chứng tỏ hai tam giác vuông đồng dạng
a) Một góc nhọn của tam giác này bằng một góc nhọn của tam giác kia
b) Cạnh góc vuông và cạnh huyền của tam giác này tỉ lệ với cạnh góc vuông và cạnh huyền của tam giác kia
c) Một cạnh góc vuông của tam giác này bằng một cạnh góc vuông của tam giác kia
d) Hai cạnh góc vuông của tam giác này tỉ lệ với hai cạnh góc vuông của tam giác kia
Cặp tam giác vuông nào đồng dạng với nhau trong hình 9.55
Cho tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k. Gọi A'H' và AH lần lượt là các đường cao đỉnh A' và A của tam giác A'B'C' và tam giác ABC. Chứng minh rằng:
a) \(\frac{{A'H'}}{{AH}} = k\)
b) Diện tích tam giác A'B'C' bằng \(k^2\) lần diện tích tam giác ABC
Hãy tìm cặp tam giác vuông đồng dạng trong Hình 8.
Cho tam giác \(ABC\) vuông tại \(A\left( {AB < AC} \right)\). Kẻ đường cao \(AH\left( {H \in BC} \right)\).
a) Chứng minh rằng \(\Delta ABH\backsim\Delta CBA\), suy ra \(A{B^2} = BH.BC\).
b) Vẽ \(HE\) vuông góc với \(AB\) tại \(E\), vẽ \(HF\) vuông góc với \(AC\) tại \(F\). Chứng minh rằng \(AE.AB = AF.AC\).
c) Chứng minh rằng \(\Delta AFE\backsim\Delta ABC\).
d) Qua \(A\) vẽ đường thẳng song song với \(BC\) cắt đường thẳng \(HF\) tại \(I\). Vẽ \(IN\) vuông góc với \(BC\) tại \(N\). Chứng minh rằng \(\Delta HNF\backsim\Delta HIC\).
Chứng minh rằng trong Hình 6.79, \(\Delta HMN\) đồng dạng với \(\Delta HPM\) và \(\Delta APN\).
Vào một thời điểm trong ngày, bóng của bạn An trên mặt đất là \(BC = 1m\), còn bóng cây \(A'B'\) là \(B'C' = 3,8m\) (Hình 6.80). Biết An cao 1,6m, hỏi cây cao bao nhiêu mét? Làm tròn kết quả đến hàng phần mười.