Đề bài

Cho \(A = \left[ {m;m + 2} \right]\)và \(B = \left[ {n;n + 1} \right]\) với m, n là các tham số thực. Tìm điều kiện của các số m và n để tập hợp \(A \cap B\)chứa đúng một phần tử.

Lời giải của GV Loigiaihay.com

Để tập hợp \(A \cap B\) chứa đúng một phần tử thì \(\left[ {\begin{array}{*{20}{c}}{m + 2 = n}\\{n + 1 = m}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = n - 2}\\{m = n + 1}\end{array}} \right.\)

Vậy với \(m = n - 2\) hoặc \(m = n + 1\) thì  \(A \cap B\) chứa đúng một phần tử.

Xem thêm : SBT Toán 10 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Cho các tập hợp C = [1; 5], D = [-2; 3]. Hãy xác định tập hợp \(C \cap \;D\).

Xem lời giải >>
Bài 2 :

Viết tập hợp X gồm những thành viên tham gia cả hai chuyên đề 1 và 2 trong tình huống mở đầu.

Tập X có phải là tập con của tập A không? Tập X có phải là tập con của tập B không? (A, B là các tập hợp trong HĐ1).

Xem lời giải >>
Bài 3 :

Cho tập hợp A,B được mình họa bằng biểu đồ Ven như hình bên. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?

A. \(A \cap B\)

B. \(A\;{\rm{\backslash }}\;B\)

C. \(A \cup B\)

D. \(B\;{\rm{\backslash }}\;A\)

 

Xem lời giải >>
Bài 4 :

Hoạt động 6 trang 7 Sách giáo khoa Toán 10 tập 1 – Cánh diều

Lớp trưởng lập hai danh sách các bạn đăng kí tham gia câu lạc bộ thể thao như sau (biết trong lớp không có hai bạn nào cùng tên):

-  Bóng đá gồm: An, Bình, Chung, Dũng, Minh, Nam, Phương.

-  Bóng rổ gồm: An, Chung, Khang, Phong, Quang, Tuấn.

Hãy liệt kê danh sách các bạn đăng kí tham gia cả hai câu lạc bộ.

Xem lời giải >>
Bài 5 :

Cho \(A = \{ (x;y)|x,y \in \mathbb{R},3x - y = 9\} \), \(B = \{ (x;y)|\;x,y \in \mathbb{R},x - y = 1\} \)

Hãy xác định \(A \cap B\).

Xem lời giải >>
Bài 6 :

Có 2 đường tròn chia một hình chữ nhật thành các miền như hình bên. Hãy đặt mooix thẻ số sau đây vào miền thích hợp trên hình chữ nhật và giải thích cách làm

65

75

78

82

90

94

100

120

231

Xem lời giải >>
Bài 7 :

Xác định các tập hợp \(A \cap B\) trong mỗi trường hợp sau:

a) \(A = \{ x \in \mathbb{R}|{x^2} - 2 = 0\} ,\)\(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \)

b) \(A = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1\} ,\)\(B = \{ (x;y)|\;x,y \in \mathbb{R},y =  - x + 5\} \)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

Xem lời giải >>
Bài 8 :

Cho hai tập hợp \(A = \left[ {a;5} \right]\) và \(B = \left[ { - 2;3} \right],\) với \(a < 5.\) Số a cần thảo mãn điều kiện gì để \(A \cap B = \emptyset .\)

Xem lời giải >>
Bài 9 :

Cho hai tập hợp \(A = \left( { - 3;3} \right],B = \left( {2; + \infty } \right)\). Tập hợp \(A \cap B\)bằng:

A. \(\left\{ { - 1;0;1;2;3} \right\}\)

B. \(\left[ { - 2; - 3} \right]\)

C. \(\left( { - 2;3} \right]\) 

D. \(\left( { - 3; + \infty } \right)\)

Xem lời giải >>
Bài 10 :

Tìm \(D = E \cap G\), biết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau:

a) \(5x - 2 > 0\)và \(3x + 7 \ge 0\)

b) \(2x + 3 > 0\)và \(5x - 9 \le 0\)

c) \(9 - 3x \ge 0\)và \(12 - 3x < 0\)

Xem lời giải >>
Bài 11 :

Cho hai tập hợp \(A = \left\{ {\left( {x;y} \right)\left| {3x - 2y = 11} \right.} \right\},B = \left\{ {\left( {x;y} \right)\left| {2x + 3y = 3} \right.} \right\}\). Hãy xác định tập hợp \(A \cap B\).

Xem lời giải >>