Trong một nhà máy có hai phân xưởng. Phân xưởng I sản xuất 40% sản phẩm. Phân xưởng II sản xuất 60% sản phẩm. Xác suất làm ra phế phẩm của hai phân xưởng I và II tương ứng là 0,05 và 0,02. Chọn ngẫu nhiên một sản phẩm của nhà máy thì đó là phế phẩm. Tính xác suất để sản phẩm đó là do phân xưởng I sản xuất.
Xác định các biến cố và áp dụng công thức Bayes.
Gọi A là biến cố: “Sản phẩm của phân xưởng I”;
B là biến cố: “Sản phẩm là phế phẩm”.
Khi đó \(\overline A \) là biến cố:”Sản phẩm của phân xưởng II”; \(\overline B \) là biến cố: “Sản phẩm không là
phế phẩm”.
Ta có \(P\left( A \right) = 0,4\), \(P\left( B|A \right)=0,05\);
\(P\left( {\overline A } \right) = 1 - P\left( A \right) = 0,6\), \(P\left( {B|\overline A } \right) = 0,02\).
Theo công thức Bayes ta có:
\(P\left( {A|B} \right) = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar A} \right) \cdot P\left( {B|\bar A} \right)}} = \frac{{0,4 \cdot 0,05}}{{0,4 \cdot 0,05 + 0,6 \cdot 0,02}} = \frac{5}{8}\).
Các bài tập cùng chuyên đề
Trong một kho rượu có 30% là rượu loại I. Chọn ngẫu nhiên một chai rượu đưa cho ông Tùng, một người sành rượu, đã nếm thử. Biết rằng, một chai rượu loại I có xác suất 0,9 để ông Tùng xác nhận là loại I; một chai rượu không phải loại I có xác suất 0,95 để ông Tùng xác nhận là đây không phải là loại I. Sau khi nếm, ông Tùng xác nhận đây là rượu loại I. Tính xác suất để chai rượu đúng là rượu loại I.
Một loại vaccine được tiêm ở địa phương X. Người có bệnh nền thì với xác suất 0,35 có phản ứng phụ sau tiêm, người không có bệnh nền thì chỉ có phản ứng phụ sau tiêm với xác suất 0,16. Chọn ngẫu nhiên một người được tiêm vaccine và người này có phản ứng phụ. Tính xác suất để người này có bệnh nền, biết rằng tỉ lệ người có bệnh nền ở địa phương X là 18%.
Cho hai biến cố A, B sao cho \(P\left( A \right) = 0,4,P\left( B \right) = 0,8;P\left( {B|A} \right) = 0,3.\) Tính \(P\left( {A|B} \right)\).
Một khu dân cư có 85% các hộ gia đình sử dụng điện để đun nước. Hơn nữa, có 21% các hộ gia đình sử dụng ấm điện siêu tốc. Chọn ngẫu nhiên một hộ gia đình, tính xác suất hộ đó sử dụng ấm điện siêu tốc, biết hộ đó sử dụng điện để đun nước.
Cho hai biến cố ngẫu nhiên \(A\) và \(B\). Biết rằng \(P\left( {A|B} \right) = 2P\left( {B|A} \right)\) và \(P\left( {AB} \right) \ne 0\). Tính tỉ số \(\frac{{P\left( A \right)}}{{P\left( B \right)}}\).
Phòng công nghệ của một công ty có 4 kĩ sư và 6 kĩ thuật viên. Chọn ra ngẫu nhiên đồng thời 3 người từ phòng. Tính xác suất để cả 3 người được chọn đều là kĩ sư, biết rằng trong 3 người được chọn có ít nhất 2 kĩ sư.
Giá sách của Dũng có hai ngăn. Ngăn trên có 3 cuốn tiểu thuyết của các nhà văn Việt Nam và 2 cuốn tiểu thuyết của các nhà văn nước ngoài. Ngăn dưới chứa 4 cuốn tiểu thuyết của các nhà văn Việt Nam và 1 cuốn tiểu thuyết của các nhà văn nước ngoài.
Dũng chọn một cuốn sách để mang đi khi du lịch theo cách sau: Tung một con xúc xắc cân đối. Nếu số chấm xuất hiện là 1 hoặc 2 thì chọn ngăn trên, nếu trái lại thì chọn ngăn dưới. Sau đó từ ngăn đã chọn lấy ngẫu nhiên một cuốn sách. Biết rằng cuốn sách Dũng chọn được là cuốn tiểu thuyết của nhà văn nước ngoài. Tính xác suất để cuốn sách thuộc ngăn trên.
Có hai chuồng thỏ. Chuồng I có 12 con thỏ trắng và 13 con thỏ nâu. Chuồng II có 14 con thỏ trắng và 11 con thỏ nâu. Tung một con xúc xắc cân đối. Nếu xuất hiện 6 chấm thì ta chọn chuồng I, nếu trái lại ta chọn chuồng II. Từ chuồng chọn được bắt ngẫu nhiên một con thỏ.
a) Giả sử bắt được con thỏ trắng. Tính xác suất để đó là con thỏ của chuồng II.
b) Giả sử bắt được con thỏ nâu. Tính xác suất để đó là con thỏ của chuồng I.
Nếu hai biến cố \(A,B\) thoả mãn \(P\left( A \right) = 0,3;P\left( B \right) = 0,6;P\left( {A|B} \right) = 0,4\) thì \(P\left( {B|A} \right)\) bằng:
A. 0,5.
B. 0,6.
C. 0,8.
D. 0,2.
Cho hai biến cố \(A,B\) sao cho \(P\left( A \right) = 0,5;P\left( B \right) = 0,2;P\left( {A|B} \right) = 0,25\). Khi đó, \(P\left( {B|A} \right)\) bằng:
A. 0,1.
B. 0,4.
C. 0,9.
D. 0,625.
Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,01%. Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90%, nếu một người không mắc bệnh thì xác suất cho kết quả dương tính là 5%. Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm?
Có hai đội thi đấu môn bắn súng. Đội I có 6 vận động viên, đội II có 8 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên trong hai đội. Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.