a) Các hàm số \({F_1}(x) = \sin x\), \({F_2}(x) = \sin x + \sqrt 3 \), \({F_3}(x) = \sin x - 2\) là những nguyên hàm của hàm số nào?
b) Vì sao hàm số \(F(x) = \ln x\) là một nguyên hàm của hàm số \(f(x) = \frac{1}{x}\) trên khoảng \((0; + \infty )\)? Tìm thêm hai nguyên hàm khác của hàm số \(f(x)\) trên khoảng \((0; + \infty )\).
a)
- Xét đạo hàm của các hàm số \({F_1}(x)\), \({F_2}(x)\), và \({F_3}(x)\) để xác định hàm số chung mà các hàm này là nguyên hàm.
b)
- Xét đạo hàm của \(F(x) = \ln x\) để chứng minh đây là nguyên hàm của hàm số \(f(x) = \frac{1}{x}\)
- Sử dụng tính chất của nguyên hàm để tìm thêm hai nguyên hàm khác của \(f(x)\) trên khoảng \((0; + \infty )\).
a)
Ta có các hàm số:
\({F_1}(x) = \sin x,\quad {F_2}(x) = \sin x + \sqrt 3 ,\quad {F_3}(x) = \sin x - 2\)
Tính đạo hàm của các hàm số này:
\(F_1'(x) = \cos x,\quad F_3'(x) = \cos x,\quad F_3'(x) = \cos x\)
Như vậy, cả ba hàm số \({F_1}(x)\), \({F_2}(x)\), và \({F_3}(x)\) đều là nguyên hàm của hàm số \(f(x) = \cos x\).
b)
Xét hàm số \(F(x) = \ln x\). Tính đạo hàm của \(F(x)\):
\(F'(x) = \frac{d}{{dx}}(\ln x) = \frac{1}{x}\)
Do đó, \(F(x) = \ln x\) là một nguyên hàm của hàm số \(f(x) = \frac{1}{x}\) trên khoảng \((0; + \infty )\).
Từ tính chất của nguyên hàm, ta có thể tìm thêm hai nguyên hàm khác của \(f(x) = \frac{1}{x}\) bằng cách thêm hằng số vào nguyên hàm \(F(x)\). Cụ thể:
\({F_1}(x) = \ln x + {C_1},\quad {F_2}(x) = \ln x + {C_2}\)
Với \({C_1}\) và \({C_2}\) là các hằng số tuỳ ý, ví dụ:
\({F_1}(x) = \ln x + 1,\quad {F_2}(x) = \ln x - 2\)
Các bài tập cùng chuyên đề
Cho hai hàm số \(f\left( x \right) = {x^2} + 1\) và \(F\left( x \right) = \frac{1}{3}{x^3} + x\), với \(x \in \mathbb{R}\).
a) Tính đạo hàm của hàm số F(x).
b) F’(x) và f(x) có bằng nhau không?
Tìm \(\int {{x^3}dx} \)
a) Chứng minh rằng hàm số \(F\left( x \right) = \frac{{{x^4}}}{4}\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^3}\) trên \(\mathbb{R}\).
b) Hàm số \(G\left( x \right) = \frac{{{x^4}}}{4} + C\) (với C là hằng số) có là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\) không? Vì sao?
Hàm số nào dưới đây là một nguyên hàm của hàm số \(f\left( x \right) = x + \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\)?
a) \(F\left( x \right) = \frac{1}{2}{x^2} + \ln x\);
b) \(G\left( x \right) = \frac{{{x^2}}}{2} - \ln x\).
Cho f(x) và g(x) là hai hàm số liên tục trên K. Giả sử F(x) là một nguyên hàm của f(x), G(x) là một nguyên hàm của g(x) trên K.
a) Chứng minh rằng \(F\left( x \right) + G\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) + g\left( x \right)\) trên K.
b) Nêu nhận xét về \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx\) và \(\int {f\left( x \right)dx + \int {g\left( x \right)dx} } \).
Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.
a) Chứng minh rằng kF(x) là một nguyên hàm của hàm số kf(x) trên K.
b) Nêu nhận xét về \(\int {kf\left( x \right)dx} \) và \(k\int {f\left( x \right)dx} \)
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao?
a) \(F\left( x \right) = x\ln x\) và \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\);
b) \(F\left( x \right) = {e^{\sin x}}\) và \(f\left( x \right) = {e^{\cos x}}\) trên \(\mathbb{R}\).
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi \(t = 0\) là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi \(v\left( t \right) = 160 - 9,8t\left( {m/s} \right)\). Tìm độ cao của viên đạn (tính từ mặt đất).
a) Sau \(t = 5\) giây;
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).
Một nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
A. \(F\left( x \right) = 2\cos 2x\).
B. \(F\left( x \right) = - \cos 2x\).
C. \(F\left( x \right) = \frac{1}{2}\cos 2x\).
D. \(F\left( x \right) = \frac{{ - 1}}{2}\cos 2x\).
Cho hàm số f(x) có đạo hàm f’(x) liên tục trên \(\mathbb{R}\), \(f\left( 1 \right) = 16\) và \(\int\limits_1^3 {f'\left( x \right)dx} = 4\). Khi đó, giá trị của f(3) bằng
A. 20.
B. 16.
C. 12.
D. 10.
Cho hàm số \(F(x) = {x^3} - 1,x \in \mathbb{R}\)và \(G(x) = {x^3} + 5,x \in \mathbb{R}\)
a) Cả hai hàm số F(x) và G(x) có phải nguyên hàm của hàm số \(f(x) = 3{x^2}\) trên \(\mathbb{R}\) hay không?
b) Hiệu F(x) - G(x) có phải là một hằng số C (không phụ thuộc vào x) hay không?
Cho hàm số \(F(x) = {x^3}\), \(x \in ( - \infty ; + \infty )\). Tính \(F'(x)\)
Hàm số \(F(x) = {x^3} + 5\) là nguyên hàm của hàm số:
A. \(f(x) = 3{x^2}\)
B. \(f(x) = \frac{{{x^4}}}{4} + 5x + C\)
C. \(f(x) = \frac{{{x^4}}}{4} + 5x\)
D. \(f(x) = 3{x^2} + 5x\)
Cho hàm số \(f\left( x \right) = 2x\) xác định trên \(\mathbb{R}\). Tìm một hàm số \(F\left( x \right)\) sao cho \(F'\left( x \right) = f\left( x \right)\).
Cho hàm số \(f\left( x \right) = 3{x^2}\) xác định trên \(\mathbb{R}\).
a) Chứng minh rằng \(F\left( x \right) = {x^3}\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).
b) Với \(C\) là hằng số tuỳ ý, hàm số \(H\left( x \right) = F\left( x \right) + C\) có là nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) không?
c) Giả sử \(G\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\). Tìm đạo hàm của hàm số \(G\left( x \right) - F\left( x \right)\). Từ đó, có nhận xét gì về hàm số \(G\left( x \right) - F\left( x \right)\)?
Chứng minh rằng \(F\left( x \right) = {e^{2x + 1}}\) là một nguyên hàm của hàm số \(f\left( x \right) = 2{e^{2x + 1}}\) trên \(\mathbb{R}\).
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho \(f\left( x \right)\) là hàm số có đạo hàm cấp hai liên tục trên đoạn \(\left[ {a;b} \right]\).
a) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f'\left( b \right)-f'\left( a \right)\).
b) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f\left( b \right)-f\left( a \right)\).
c) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f'\left( a \right)-f'\left( b \right)\).
d) \(\int\limits_{a}^{b}{f''\left( x \right)dx}=f\left( a \right)-f\left( b \right)\).
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho \(K\) là một khoảng trên \(\mathbb{R}\); \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\); \(G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên \(K\).
a) Nếu \(F\left( x \right) = G\left( x \right)\) thì \(f\left( x \right) = g\left( x \right)\).
b) Nếu \(f\left( x \right) = g\left( x \right)\) thì \(F\left( x \right) = G\left( x \right)\).
c) \(\int {f\left( x \right)dx} = F\left( x \right) + C,C \in \mathbb{R}\).
d) \(\int {f'\left( x \right)dx} = F\left( x \right) + C,C \in \mathbb{R}\).
Cho \(\int {f(x)dx = \sin x + \cos x + C.} \) Tính \(f(\pi )\).
a) Giải thích vì sao \(F(x) = x + \cos x\) là một nguyên hàm của hàm số \(f(x) = 1 - \sin x\) trên \(\mathbb{R}\).
b) Hàm số \(G(x) = \sqrt x \) có là một nguyên hàm của hàm số \(g(x) = \frac{1}{{2\sqrt x }}\) trên khoảng \((0; + \infty )\) không? Giải thích.
a) Chứng minh hàm số \(F(x) = {e^x} + 3\) là một nguyên hàm của hàm số \(f(x) = {e^x}\).
b) Chứng minh hàm số \(F(x) = \frac{{{2^x}}}{{\ln 2}}\) là một nguyên hàm của hàm số \(f(x) = {2^x}\).
a) Tính đạo hàm của hàm số \(y = \frac{1}{3}{x^3}\).
b) Tính đạo hàm của hàm số \(y = \ln \left| x \right|\)trên các khoảng \(( - \infty ;0)\) và \((0; + \infty )\).
Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x) = x\). Chứng minh \(2F(x)\) là một nguyên hàm của hàm số \(2f(x)\).
Trong các cặp hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?
a) \(x{e^x}\) và \((x - 1){e^x}\);
b) \(\frac{1}{2}{\ln ^2}x\) và \(\frac{{\ln x}}{x}\).
Tìm hàm số \(f(x)\), biết một nguyên hàm của \(f(x)\) là:
a) \(F(x) = x\sin x + \sqrt 2 \)
b) \(F(x) = {e^x} - \sqrt x \)
Hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên khoảng \(K\) nếu