Đề bài

Cho tam giác ABC có AB=12cmAC=15cm. Trên các tia AB, AC lần lượt lấy các điểm M, N sao cho AM=10cmAN=8cm. Chứng minh rằng ΔABC ∽ ΔANM.

Phương pháp giải

- Chứng minh: \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\)

- Chứng minh hai tam giác ABC và tam giác ANM có hai cạnh tương ứng tỉ lệ và góc A chung nên hai tam giác ABC và tam giác ANM đồng dạng với nhau.

Lời giải của GV Loigiaihay.com

Có  AB=12cm , AN=8cm => \(\frac{{AN}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)

AC=15cm,  AM=10cm => \(\frac{{AM}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3}\)

=> \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\)

- Xét hai tam giác ABC và tam giác ANM, có

\(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\), góc A chung

=> ΔABC ∽ ΔANM (c.g.c) 

Xem thêm : SGK Toán 8 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Những cặp tam giác nào trong hình 9.17 là đồng dạng? (Các kích thước được tính theo đơn vị centimét). Viết đúng kí hiệu đồng dạng.

Xem lời giải >>
Bài 2 :

Cho ΔA'B'C' ∽ ΔABC. Trên tia đối của các tia CB, C'B' lần lượt lấy các điểm M, M' sao cho \(\frac{{MC}}{{MB}} = \frac{{M'C'}}{{M'B'}}\). Chứng minh rằng  ΔA'B'M' ∽ ΔABM


Xem lời giải >>
Bài 3 :

Bạn Lan nhận xét rằng nếu tam giác ABC và tam giác A’B’C’ có \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)\(\widehat {B'} = \widehat B\) thì chúng đồng dạng. Theo em bạn Lan nhận xét đúng không vì sao?

Gợi ý. Khi góc ACB tù, lấy điểm M trên tia BC sao cho \( \Delta AMC \) cân (H.9.19) rồi xét xem trong hai tam giác ABC và ABM, tam giác nào đồng dạng với tam giác A'B'C'.

Xem lời giải >>
Bài 4 :

Cho tam giác \(ADE\) và tam giác \(ACF\) có các kích thước như trong Hình 8. Chứng minh rằng \(\Delta ADE\backsim\Delta ACF\).

Xem lời giải >>
Bài 5 :

Xét xem cặp tam giác nào trong Hình 16a,16b đồng dạng?

Xem lời giải >>
Bài 6 :

Trong Hình 17, cho biết \(DE = 6cm,EF = 7,8cm,NP = 13cm,NM = 10cm,\widehat E = \widehat N\) và \(\widehat P = 42^\circ \). Tính \(\widehat F\).

 

Xem lời giải >>
Bài 7 :

a) Cho tam giác \(ABC\) có \(AB = 12cm,AC = 15cm,BC = 18cm\). Trên cạnh \(AB\), lấy điểm \(E\) sao cho \(AE = 10cm\). Trên cạnh \(AC\), lấy điểm \(F\) sao cho \(AF = 8cm\) (hình 18a). Tính độ dài đoan thẳng \(EF\).

b) Trong Hình 18b, cho biết \(FD = FC,BC = 9dm,DE = 12dm,AC = 15dm,MD = 20dm.\)

Chứng minh rằng \(\Delta ABC\backsim\Delta MED\).

 

Xem lời giải >>
Bài 8 :

Quan sát hình 68 và so sánh:

a) Các tỉ số \(\frac{{A'B'}}{{AB}}\) và \(\frac{{A'C'}}{{AC}}\)

b) Các góc \(\widehat A\) và \(\widehat {A'}\)

Xem lời giải >>
Bài 9 :

Cho hai tam giác ABC và A’B’C’ thỏa mãn \(AB = 2,AC = 3,A'B' = 6,A'C' = 9\) và \(\widehat A = \widehat {A'}\). Chứng minh \(\widehat B = \widehat {B'},\,\,\widehat C = \widehat {C'}\).

Xem lời giải >>
Bài 10 :

Cho góc \(xOy\). Trên tia Ox lấy các điểm A, B sao cho \(OA = 2cm,\,\,OB = 9cm\). Trên tia Oy lấy các điểm M, N sao cho \(OM = 3cm,\,\,ON = 6cm\). ChỨNG minh \(\widehat {OBM} = \widehat {ONA}\).

Xem lời giải >>
Bài 11 :

Cho Hình 74.

a) Chứng minh \(\Delta ABC \backsim \Delta MNP\)

b) Góc nào của tam giác MNP bằng góc B?

c) Góc nào của tam giác ABC bằng góc P?

Xem lời giải >>
Bài 12 :

Cho Hình 75, chứng minh:

a) \(\Delta IAB \backsim \Delta IDC\)

b) \(\Delta IAD \backsim \Delta IBC\)

Xem lời giải >>
Bài 13 :

Cho \(\Delta ABC \backsim \Delta MNP\).

a) Gọi D và Q lần lượt là trung điểm của BC và NP. Chứng minh \(\Delta ABD \backsim \Delta MNQ\).

b) Gọi G và K lần lượt là trọng tâm của hai tam giác ABC và MNP. Chứng minh \(\Delta ABG \backsim \Delta MNK\).

Xem lời giải >>
Bài 14 :

Đố. Chỉ sử dụng thước thẳng có chia đơn vị đến milimét và thước đo góc, làm thế nào đo được khoảng cách giữa hai vị trí B, C trên thực tế, biết rằng có vị trí A thỏa mãn \(AB = 20m,{\rm{ }}AC = 50m,\;\,\,\widehat {BAC} = 135^\circ \)

Bạn Vy làm như sau: Vẽ tam giác A'B'C' có \(A'B' = 2cm,{\rm{ }}A'C' = 5cm,\;\widehat {B'A'C'} = 135^\circ \). Bạn Vy lấy thước đo khoảng cách giữa hai điểm B', C' và nhận được kết quả \(B'C'\; \approx \;6,6cm\). Từ đó, bạn Vy kết luận khoảng cách giữa hai vị trí B, C trên thực tế khoảng 66 m. Em hãy giải thích tại sao bạn Vy có thể kết luận như vậy.

Xem lời giải >>
Bài 15 :

Cho hai tam giác ABC và PMN thỏa mãn \(\widehat A = 70^\circ ,\,\,\widehat B = 80^\circ ,\,\,\widehat M = 80^\circ ,\,\,\widehat N = 30^\circ \). Chứng minh \(\frac{{AB}}{{PM}} = \frac{{BC}}{{MN}} = \frac{{CA}}{{NP}}\).

Xem lời giải >>
Bài 16 :

Cắt \(\Delta A'B'C'\) và \(\Delta ABC\) bằng tờ giấy có \(\widehat {A'} = \widehat A\) và \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{2}{3}.\) Xếp \(\Delta A'B'C'\) và \(\Delta ABC\) sao cho cạnh \(A'B'\) chồng lên cạnh \(AB\) và cạnh \(A'C'\) chồng lên cạnh \(AC\) như Hình 6.59.

1. Vì sao trong Hình \(6.59b\) cạnh \(B'C'\) song song với cạnh \(BC?\)

2. Em có kết luận gì về \(\Delta A'B'C'\) và \(\Delta ABC\)?

Xem lời giải >>
Bài 17 :

Khẳng định nào sau đây đúng với các tam giác trong Hình 6.22?

 

a) \(\Delta AOD \backsim \Delta COB;\)

b) \(\Delta AOB \backsim \Delta DOC.\)

Xem lời giải >>
Bài 18 :

Xác định các cặp tam giác đồng dạng với nhau trong Hình 6.65. Cho biết kí hiệu của sự đồng dạng và xác định tỉ số đồng dạng trong mỗi trường hợp.

Xem lời giải >>
Bài 19 :

Bạn Cường đo được khoảng cách từ vị trí mình đứng (điểm C) đến cây A và  cây B ở hai bên hồ nước lần lượt là \(AC = 24m\) và \(BC = 28m\) (Hình 6.66). Để tính độ dài \(AB,\) Cường xác định điểm \(D\) nằm giữa \(A,C\) và điểm \(E\) nằm giữa \(B,C\) sao cho \(CD = 6m,CE = 7m\) và đo khoảng cách giữa \(D\) và \(E.\) Nếu \(DE = 9m\) thì khoảng cách giữa \(A\) và \(B\) là bao nhiêu mét?

Xem lời giải >>
Bài 20 :

Chứng minh rằng trong Hình 6.67, \(\Delta ABC \backsim \Delta DBA.\) Tính độ dài đoạn thẳng \(AD.\)

Xem lời giải >>
Bài 21 :

Giải thích vì sao trong Hình 6.76, \(\Delta A'B'C'\) đồng dạng với \(\Delta ABC\)?

 

Xem lời giải >>
Bài 22 :

Cho \(\Delta ABC\) có \(AD\) là đường trung tuyến. Một đường thẳng \(d\) song song với \(BC\) cắt \(AB,AC\) và \(AD\) lần lượt tại \(M,N\) và \(O\) .

a) Chứng minh rằng \(O\) là trung điểm của \(MN.\)

b) Cho tỉ số của diện tích \(\Delta AMN\) và \(\Delta ABC\) là \(\frac{4}{9}\) . Chứng minh rằng \(O\) là trọng tâm của \(\Delta ABC.\) 

Xem lời giải >>