Chia thành các nhóm, mỗi nhóm có hai số hạng.
\({\rm{A}} = {3^0} + 3 + {3^2} + \ldots + {3^{2021}}\)
Ta có:
\(\begin{array}{l}{\rm{A}} = (1 + 3) + \left( {{3^2} + {3^3}} \right) + \ldots + \left( {{3^{2020}} + {3^{2021}}} \right)\\ = 4 + {3^2}.(1 + 3) + \ldots + {3^{2020}}.(1 + 3)\\ = 4 + {3^2}.4 + \ldots + {3^{2020}}.4\\ = 4.\left( {1 + {3^2} + \ldots + {3^{2020}}} \right)\end{array}\)
\(4 \vdots 4\) và \(\left( {1 + {3^2} + \ldots + {3^{2020}}} \right) \in {\rm{N}}\\ \Rightarrow 4.\left( {1 + {3^2} + \ldots + {3^{2020}}} \right) \vdots 4\)
Vậy \(A \vdots 4\).

Các bài tập cùng chuyên đề
Danh sách bình luận