a) Tìm các ước của mỗi số: 30; 42; -50.
b) Tìm các ước chung của 30 và 42.
Muốn tìm tất cả các ước của một số nguyên a ta lấy các ước dương của a cùng với các số đối của chúng.
a)
+ Các ước dương của 30 là 1; 2; 3; 5; 6; 10; 15; 30. Do đó tất cả các ước của 30 là:
1; 2; 3; 5; 6; 10; 15; 30; -1; -2; -3; -5; -6; -10; -15; -30.
+ Các ước dương của 42 là 1; 2; 3; 6; 7; 14; 21; 42. Do đó tất cả các ước của 42 là:
1; 2; 3; 6; 7; 14; 21; 42; -1; -2; -3; -6; -7; -14; -21; -42.
+ Các ước dương của 50 là 1; 2; 5; 10; 25; 50. Do đó tất cả các ước của -50 là:
1; 2; 5; 10; 25; 50; -1; -2; -5; -10; -25; -50.
b) Từ kết quả câu a, ta thấy 30 và 42 có các ước chung là:
1; 2; 3; 6; -1; -2; -3; -6.
Các bài tập cùng chuyên đề
a) Tìm các ước của mỗi số: 30; 42, -50;
b) Tìm các ước chung của 30 và 42.
Tìm hai ước của 15 có tổng bằng -4.
Tìm tất cả các ước của các số nguyên sau: 6;-1;13;-25
a) \( - 10\) có phải là một bội của 2 hay không?
b) Tìm các ước của 5.
a) Tìm số thích hợp ở ? trong bảng sau:
b) Số \( - 36\) có thể chia hết cho các số nguyên nào?
Tìm các ước của 21 và -66.
Ta đã biết: Nếu hai số nguyên a và b cùng chia hết cho số nguyên c thì a + b và a – b cũng chia hết cho c. Hãy sử dụng kết quả đó để tìm số nguyên x sao cho x + 5 chia hết cho x (nói cách khác: x là ước của x + 5).
Tìm tất cả các ước chung của hai số 36 và 42.
Tìm các ước của mỗi số nguyên sau:4; -8; 19; -34.
Tìm các số nguyên x thoả mãn:
a) \({x^2} = 9\)
b) \({x^2} = 100\)
Tìm số nguyên a,b sao cho:
a) (2a – 1). (b2 +1) = -17
b) (3 – a). (5 – b) = 2
c) ab = 18, a+b = 11
Tìm hai ước của 15 có tổng bằng -4.
a) Tìm các ước của 15 và các ước của -25.
b) Tìm các ước chung của 15 và -25.
Sử dụng tính chất chia hết của một tổng các số nguyên dương (tương tự như đối với số tự nhiên) để giải bài toán sau:
Tìm số nguyên x \(\left( {x \ne - 1} \right)\) sao cho 2x – 5 chia hết cho x + 1 .
Tập hợp các ước của \(-8\) là:
Có bao nhiêu ước của \(-24\).
Giá trị lớn nhất của \(a\) thỏa mãn \(a + 4\) là ước của \(9\) là:
Tìm \(n \in \mathbb{Z}\), biết: \(\left( {n + 5} \right) \vdots \left( {n + 1} \right)\)
Có bao nhiêu số nguyên \(a < 5\) biết: \(10\) là bội của \(\left( {2a + 5} \right)\)
Tìm tất cả các ước của \(12\).
Tìm \(x \in \mathbb{Z}\) sao cho \(\left( {x + 8} \right)\, \vdots \,\left( {x + 1} \right)\).
Viết tập hợp các ước của \(-18\) lớn hơn \(-9\) nhưng nhỏ hơn \(9\).
Tìm \(x\), biết: \(12\, \vdots \,x\) và \(x < - 2\)
Số các ước nguyên của số nguyên tố \(p\) là:
Các số nguyên \(x\) thỏa mãn: \(-8\) chia hết cho \(x\) là:
Tìm tất cả các ước của \(25\)
Tập hợp các ước của \(- 8\) là: