Đề bài

Cho hình chữ nhật ABCD. Cho M là trung điểm của cạnh BC. Chứng minh rằng \(\Delta ABM = \Delta DCM\).

Phương pháp giải

Chứng minh hai tam giác vuông bằng nhau theo trường hợp hai cạnh góc vuông

Lời giải của GV Loigiaihay.com

GT

Hình chữ nhật ABCD, \(M \in BC,MB = MC.\)

M thuộc tia đối của tia CO

KL

 \(\Delta ABM = \Delta DCM\)

Ta thấy ABM và DCM là hai tam giác lần lượt vuông tại các đỉnh B, C và có:

AB = DC (hai cạnh đối của hình chữ nhật bằng nhau)

BM = CM (theo giả thiết)

Vậy \(\Delta ABM = \Delta DCM\)( hai cạnh góc vuông)

Xem thêm : Vở thực hành Toán 7

Các bài tập cùng chuyên đề

Bài 1 :

Hai tam giác vuông ABC (vuông tại đỉnh A) và A’B’C’ (vuông tại đỉnh A’) có các cặp cạnh góc vuông bằng nhau: AB = A'B', AC = A'C' (H.4.45). Dựa vào trường hợp bằng nhau cạnh - góc - cạnh của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và ABC bằng nhau.

Xem lời giải >>
Bài 2 :

Cho hình chữ nhật ABCD, M là trung điểm của cạnh BC.

Chứng minh rằng \(\Delta ABM = \Delta DCM\).

Xem lời giải >>
Bài 3 :

Cho các điểm A, B, C, D như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED. Chứng minh rằng:

a) \(\Delta AED = \Delta BEC\)

b) \(\Delta ABC = \Delta BAD\)

Xem lời giải >>
Bài 4 :

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng \(BN = CM;BN \bot CM.\)

Xem lời giải >>
Bài 5 :

Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy 2 điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

a)\(AF = CE\)

b)\(AF // CE\)

Xem lời giải >>
Bài 6 :

Cho 5 điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE

a) Chứng minh rằng AB = CE

b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng \(\widehat {BFC} = {90^0}\) 

Xem lời giải >>
Bài 7 :

Cho hình vẽ dưới đây. Biết AB = A’B’, HB = H’B’, BC = B’C’.

Chứng minh rằng AC = A’C’.

Xem lời giải >>