Đề bài

Mặt cắt ngang của một đập ngăn nước có dạng hình thang ABCD (H.4.29a). Chiều rộng của mặt trên AB của đập là 3m. Độ dốc của sườn AD, tức là \(\tan D = 1,25\). Độ dốc của sườn BC, tức là \(\tan C = 1,5\). Chiều cao của đập là 3,5m. Hãy tính chiều rộng CD của chân đập, chiều dài của các sườn AD và BC (làm tròn đến dm).

Phương pháp giải

+ Kẻ các đường cao AH, BK của hình thang ABCD thì D, H, K, C nằm theo thứ tự đó trên đoạn DC.

+ Trong tam giác vuông AHD, ta có \(DH = \frac{{AH}}{{\tan D}}\), tính được DH.

+ Trong tam giác vuông BKC, ta có \(KC = \frac{{BK}}{{\tan C}}\), tính được KC.

+ Ta có: \(DC = DH + HK + KC\)

+ Áp dụng định lí Pythagore vào tam giác AHD vuông tại H tính được AD.

+ Áp dụng định lí Pythagore vào tam giác BKC vuông tại K tính được BC.

Lời giải của GV Loigiaihay.com

(H.4.29b)

Kẻ các đường cao AH, BK của hình thang ABCD thì D, H, K, C nằm theo thứ tự đó trên đoạn DC.

Trong tam giác vuông AHD, ta có

\(DH = \frac{{AH}}{{\tan D}} = \frac{{3,5}}{{1,25}} = 2,8\)

Trong tam giác vuông BKC, ta có

\(KC = \frac{{BK}}{{\tan C}} = \frac{{3,5}}{{1,5}} \approx 2,3\)

Ta có:

\(DC = DH + HK + KC = 2,8 + 3 + 2,3 = 8,1\left( m \right)\)

Trong tam giác AHD, ta có

\(A{D^2} = A{H^2} + H{D^2} = {3,5^2} + {2,8^2}\),

suy ra \(AD \approx 4,5m\).

Trong tam giác vuông BKC, ta có

\(B{C^2} = B{K^2} + K{C^2} = {3,5^2} + {2,3^2}\), suy ra \(BC \approx 4,2m\).

Xem thêm : Vở thực hành Toán 9

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 15\,cm,AB = 12\,cm\) . Tính $AC;\widehat B$ .

Xem lời giải >>
Bài 2 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 7\,cm,AB = \,5cm\). Tính $BC;\widehat C$ . 

Xem lời giải >>
Bài 3 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 26\,cm,AB = 10\,cm\) Tính \(AC;\widehat B\) . (làm tròn đến độ)

Xem lời giải >>
Bài 4 :

Cho tam giác \(ABC\) cân tại \(A,\,\,\angle B = {65^0},\)  đường cao \(CH = 3,6\).  Hãy giải tam giác \(ABC\).

Xem lời giải >>
Bài 5 :

Cho tam giác vuông ABC có cạnh góc vuông AB = 4, cạnh huyền BC = 8. Tính cạnh AC (làm tròn đến số thập phân thứ ba) và các góc B, C (làm tròn đến độ).

Xem lời giải >>
Bài 6 :

1.  Hãy nêu cách giải tam giác ABC vuông tại A khi biết hai cạnh \(AB = c,AC = b\) hoặc \(AB = c,BC = a\) và không sử dụng định lý Pythagore (H.4.21).

2. Hãy nêu cách giải tam giác ABC vuông tại A khi biết cạnh góc vuông AB (hoặc cạnh huyền BC) và góc B.

Xem lời giải >>
Bài 7 :

Giải tam giác ABC vuông tại A, biết \(BC = 9,\widehat C = {53^0}.\)

Xem lời giải >>
Bài 8 :

Giải bài toán ở tình huống mở đầu với \(\alpha  = {27^0},\beta  = {19^0}.\)

Tình huống mở đầu: Để đo chiều cao của một tòa lâu đài (H.4.11) , người ta đặt giác kế thẳng đứng tại M. Quay ống ngắm của giác kế sao cho nhìn thấy đỉnh P’ của tòa lâu đài dưới góc nhọn \(\alpha \). Sau đó, đặt giác kế thẳng đứng tại N, NM = 20 m, thì nhìn thấy đỉnh P’ dưới góc nhọn \(\beta \left( {\beta  < \alpha } \right).\) Biết chiều cao giác kế là 1,6 m, hãy tính chiều cao của tòa lâu đài.

Xem lời giải >>
Bài 9 :

Giải tam giác ABC vuông tại A có \(BC = a,AC = b,AB = c,\) trong các trường hợp:

a) \(a = 21,b = 18;\)

b) \(b = 10,\widehat C = {30^0};\)

c) \(c = 5,b = 3.\)

Xem lời giải >>
Bài 10 :

Cho tam giác ABC (Hình 5). Em hãy cho biết trong các trường hợp nào sau đây, ta có thể tính được tất cả các cạnh và các góc của tam giác. Giải thích cách tính.

Xem lời giải >>
Bài 11 :

Trong Hình 9, cho OH = 4 m, \(\widehat {AOH} = {42^o},\widehat {HOB} = {28^o}\). Tính chiều cao AB của cây.

Xem lời giải >>
Bài 12 :

Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B). Khi đi từ A đến B, An phải đi đoạn lên dốc AC và đoạn xuống dốc CB (Hình 12). Biết AB = 762m, \(\widehat A = {6^o},\widehat B = {4^o}\).

a) Tính chiều cao h của con dốc

b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ khi lên dốc là 4 km/h và tốc độ khi xuống dốc là 19 km/h.

Xem lời giải >>
Bài 13 :

Cho tam giác OPQ vuông tại O có \(\widehat P = {39^o}\) và PQ = 10 cm. Hãy giải tam giác vuông OPQ.

Xem lời giải >>
Bài 14 :

Tìm độ dài cạnh góc vuông \(AC\) và số đo các góc nhọn \(B,C\) của tam giác vuông \(ABC\), biết cạnh góc vuông \(AB = 5cm\) và cạnh huyền \(BC = 13cm\).

Xem lời giải >>
Bài 15 :

Tìm số đo góc nhọn \(C\) và độ dài cạnh góc vuông \(AB\), cạnh huyền \(BC\) của tam giác vuông \(ABC\), biết cạnh góc vuông \(AC = 7cm\) và \(\widehat B = 55^\circ \).

Xem lời giải >>
Bài 16 :

Cho hình chữ nhật \(ABCD\) thỏa mãn \(AC = 6cm,\widehat {BAC} = 47^\circ \). Tính độ dài các đoạn thẳng \(AB,AD\).

Xem lời giải >>
Bài 17 :

Tính độ dài đường gấp khúc \(ABCDEGH\), biết các tam giác \(OAB,OBC,OCD,ODE,OEG,OGH\) là các tam giác vuông tại các đỉnh lần lượt là \(B,C,D,E,G,H\); các góc \({O_1},{O_2},{O_3},{O_4},{O_5},{O_6}\) đều bằng \(30^\circ \) và \(OA = 2cm\) (Hình 25).

Xem lời giải >>
Bài 18 :

Hình 26 minh hoạ một phần con sông có bề rộng \(AB = 100m\).Một chiếc thuyền đi thẳng từ vị trí \(B\) bên này bờ sông đến vị trí \(C\) bên kia bờ sông. Tính quãng đường \(BC\) (làm tròn kết quả đến hàng phần mười của mét), biết \(\widehat {ABC} = 35^\circ \).

Xem lời giải >>
Bài 19 :

Tính các độ dài n, p, x, z trong Hình 4.19. Làm tròn kết quả đến hàng phần trăm.

Xem lời giải >>
Bài 20 :

Trong mỗi trường hợp dưới đây, hãy xác định độ dài các cạnh và số đo góc ở các ô . Làm tròn số đo góc đến độ và độ dài cạnh đến hàng phần mười. Cho biết em đã sử dụng hệ thức, định lí nào để tính.

Xem lời giải >>
Bài 21 :

Giải các tam giác vuông MNP và XYZ trong Hình 4.21. Làm tròn số đo góc đến độ và độ dài cạnh đến hàng phần mười.

Xem lời giải >>
Bài 22 :

Trong Hình 4.22, một người đứng từ sân thượng tòa nhà và quan sát một người đi xe máy từ vị trí C đến vị trí D.

a) Giải tam giác vuông ABD.

b) Tính tốc độ của xe máy, biết thời gian xe đi từ C đến D là 6,5 giây. Làm tròn số đo góc đến độ và độ dài cạnh đến hàng phần mười mét.

Xem lời giải >>
Bài 23 :

Giải tam giác ABC vuông tại A, biết:

a) \(AC = 11cm,\widehat C = {60^o}\);

b) \(BC = 20cm,\widehat C = {35^o}\);

c) \(AB = 7cm,AC = 12cm\);

d) \(AB = 9cm,BC = 20cm\).

Xem lời giải >>
Bài 24 :

Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho.

Tính số đo góc \(\alpha \) và các độ dài x, y trong mỗi trường hợp ở Hình 4.31.

Xem lời giải >>
Bài 25 :

Cho tam giác vuông có cạnh huyền bằng 25 cm, một góc nhọn bằng 29o. Tính các cạnh còn lại của tam giác đó.

Xem lời giải >>
Bài 26 :

Giải tam giác ABC vuông tại A, với \(AB = c,BC = a,CA = b\) trong các trường hợp (cạnh làm tròn đến chữ số thập phân thứ ba):

a) \(a = 5,\widehat B = {50^o}\);

b) \(b = 5,\widehat B = {40^o}\);

c) \(b = 5,\widehat C = {55^o}\).

Xem lời giải >>
Bài 27 :

Độ dài cạnh BC trong Hình 2 (kết quả làm tròn đến hàng phần trăm) là

 

A. 17,14

B. 9,83

C. 8,40

D. 6,88

Xem lời giải >>
Bài 28 :

Khoảng cách giữa hai chân tháp AB và MN là x (Hình 3). So với phương nằm ngang AH, từ đỉnh A của tháp AB nhìn lên đỉnh M của tháp MN ta được góc \(\alpha \), từ đỉnh A của tháp AB nhìn xuống chân N của tháp MN ta được góc \(\beta \). Cho biết x = 120 m, \(\alpha \) = 30o\(\beta \) = 20o . Chiều cao của tháp MN (kết quả làm tròn đến hàng đơn vị của mét) là

 

A. 113 m

B. 25 m

C. 101 m

D. 21,7 m

Xem lời giải >>
Bài 29 :

Cho tam giác ABC vuông tại A có đường cao AH, BH = 1 cm, CH = 4 cm. Giải tam giác ABC.

Xem lời giải >>
Bài 30 :

Giải các tam giác vuông trong Hình 7.

 

Xem lời giải >>