Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh, trên truyền hình lần lượt là x, y (phút) \((x,y \ge 0)\)
Quảng cáo trên phát thanh dài ít nhất 5 phút nên \(x \ge 5\)
Quảng cáo trên truyền hình dài nhiều nhất 4 phút nên \(0 \le y \le 4\)
Hiệu quả chung của quảng cáo là \(F = x + 6y\)
Chi phí cho quảng cáo là: 800 000.x + 4 000 000.y (đồng)
Chi tối đa 16 000 000 đồng cho quảng cáo nên \(800{\rm{ }}000.x{\rm{ }} + {\rm{ }}4{\rm{ }}000{\rm{ }}000.y \le 16\;000\;000\) hay \(x + 5y \le 20\)
Bài toán trở thành: Tìm x,y sao cho \(F = x + 6y\) đạt GTLN với các điều kiện:
\(\left\{ \begin{array}{l}x \ge 5\\0 \le y \le 4\\x + 5y \le 20\end{array} \right.\) (*)
Biểu diễn miền nghiệm của (*) trên hệ trục Oxy, ta được:

Miền nghiệm là miền tam giác ABC (kể cả các cạnh), trong đó \(A(5;3),B(5;0),C(20;0)\)
Lần lượt thay tọa độ các điểm A, B, C, D vào biểu thức \(F(x;y) = x + 6y\) ta được:
\(\begin{array}{l}F(5;3) = 5 + 6.3 = 23\\F(5;0) = 5 + 6.0 = 5\\F(20;0) = 20 + 6.0 = 20\end{array}\)
Do đó F đạt giá trị lớn nhất bằng 23 tại \(x = 5;y = 3\)
Vậy công ty đó nên đặt quảng cáo 5 phút trên sóng phát thanh và 3 phút trên truyền hình để đạt hiệu quả cao nhất.

Các bài tập cùng chuyên đề