Đề bài
Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Trong không gian Oxyz, cho vecto \(\overrightarrow a  = (2;1; - 2)\), \(\overrightarrow b  = (0; - 1;1)\).

a) \(\left| {\overrightarrow a } \right| = 3\)

Đúng
Sai

b) \(\overrightarrow a  + \overrightarrow b  = (2;0; - 1)\)

Đúng
Sai

c) \(\overrightarrow a .\overrightarrow b  =  - 1\)

Đúng
Sai

d) Góc giữa hai vecto \(\overrightarrow a ,\overrightarrow b \) bằng \({60^o}\)

Đúng
Sai
Đáp án

a) \(\left| {\overrightarrow a } \right| = 3\)

Đúng
Sai

b) \(\overrightarrow a  + \overrightarrow b  = (2;0; - 1)\)

Đúng
Sai

c) \(\overrightarrow a .\overrightarrow b  =  - 1\)

Đúng
Sai

d) Góc giữa hai vecto \(\overrightarrow a ,\overrightarrow b \) bằng \({60^o}\)

Đúng
Sai
Phương pháp giải

Sử dụng các quy tắc cộng vecto, công thức tính tích vô hướng của hai vecto, độ dài vecto, góc giữa hai vecto.

a) Đúng. Vì \(\left| {\overrightarrow a } \right| = \sqrt {{2^2} + {1^2} + {{( - 2)}^2}}  = 3\).

b) Đúng. Vì \(\overrightarrow a  + \overrightarrow b  = (2 + 0;1 - 1; - 2 + 1) = (2;0; - 1)\).

c) Sai. Vì \(\overrightarrow a .\overrightarrow b  = 2.0 + 1.( - 1) - 2.1 =  - 3\).

d) Sai. Vì \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3}}{{\sqrt {{2^2} + {1^2} + {{( - 2)}^2}} .\sqrt {{0^2} + {{( - 1)}^2} + {1^2}} }} = \frac{{ - \sqrt 2 }}{2}\] nên góc giữa hai vecto \(\overrightarrow a ,\overrightarrow b \) bằng \({135^o}\).

Các bài tập cùng chuyên đề

Bài 1 :

Trong Ví dụ 3, tính \({\left( {\overrightarrow a  + \overrightarrow b } \right)^2}\).

 
Xem lời giải >>
Bài 2 :

Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right),\overrightarrow b = \left( {1;1; - 1} \right)\).
a) Xác định tọa độ của vectơ \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \).
b) Tính độ dài vectơ \(\overrightarrow u \).
c) Tính \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\).

Xem lời giải >>
Bài 3 :

Trong không gian Oxyz, cho các điểm \(A\left( {2; - 1;3} \right),B\left( {1;1; - 1} \right)\) và \(C\left( { - 1;0;2} \right)\).
a) Tìm tọa độ trọng tâm G của tam giác ABC.
b) Tìm tọa độ điểm M thuộc trục Oz sao cho đường thẳng BM vuông góc với đường thẳng AC.

Xem lời giải >>
Bài 4 :

Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a  = \left( {3;1;2} \right)\), \(\overrightarrow b  = \left( { - 3;0;4} \right)\) và \(\overrightarrow c  = \left( {6; - 1;0} \right)\)

a) Tìm tọa độ của các vectơ \(\overrightarrow a  + \overrightarrow b  + \overrightarrow c \) và \(2\overrightarrow a  - 3\overrightarrow b  - 5\overrightarrow c \).

b) Tính các tích vô hướng \(\overrightarrow a .\left( { - \overrightarrow b } \right)\) và \(\left( {2\overrightarrow a } \right).\overrightarrow c \).

 
Xem lời giải >>
Bài 5 :

Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a  = \left( {3;1;2} \right)\), \(\overrightarrow b  = \left( { - 3;0;4} \right)\) và \(\overrightarrow c  = \left( {6; - 1;0} \right)\)

a) Tìm tọa độ của các vectơ \(\overrightarrow a  + \overrightarrow b  + \overrightarrow c \) và \(2\overrightarrow a  - 3\overrightarrow b  - 5\overrightarrow c \).

b) Tính các tích vô hướng \(\overrightarrow a .\left( { - \overrightarrow b } \right)\) và \(\left( {2\overrightarrow a } \right).\overrightarrow c \).

 
Xem lời giải >>
Bài 6 :

Trong không gian Oxyz, cho ba điểm \(M\left( { - 4;3;3} \right),N\left( {4; - 4;2} \right)\) và \(P\left( {3;6; - 1} \right)\).

a) Tìm tọa độ của các vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \), từ đó chứng minh rằng ba điểm M, N, P không thẳng hàng.

b) Tìm tọa độ của vectơ \(\overrightarrow {NM}  + \overrightarrow {NP} \), từ đó suy ra tọa độ của điểm Q sao cho tứ giác MNPQ là hình bình hành.

c) Tính chu vi của hình bình hành MNPQ.

 
Xem lời giải >>
Bài 7 :

Trong không gian Oxyz, cho tam giác ABC có \(A\left( {1;0;1} \right),B\left( {0; - 3;1} \right)\) và \(C\left( {4; - 1;4} \right)\).

a) Tìm tọa độ trọng tâm của tam giác ABC.

b) Chứng minh rằng \(\widehat {BAC} = {90^0}\).

c) Tính \(\widehat {ABC}\).

 
Xem lời giải >>
Bài 8 :

Trong không gian với hệ tọa độ Oxyz, cho A(-2;3;0), B(4;0;5), C(0;2;-3).

a) Chứng minh rằng ba điểm A, B, C không thẳng hàng

b) Tính chu vi tam giác ABC

c) Tìm tọa độ trọng tâm G của tam giác ABC

d) Tính \(\cos \widehat {BAC}\)

Xem lời giải >>
Bài 9 :

Trong không gian với hệ tọa độ Oxyz, cho A(2;0;-3), B(0;-4;5) và C(-1;2;0).

a) Chứng minh rằng ba điểm A, B, C không thằng hàng

b) Tìm tọa độ của điểm D sao cho tứ giác ABCD là hình bình hành

c) Tìm tọa độ trọng tâm G của tam giác ABC

d) Tính chu vi của tam giác ABC

e) Tính \(\cos \widehat {BAC} \)

Xem lời giải >>
Bài 10 :

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {5;7; - 4} \right),B\left( {6;8; - 3} \right),C\left( {6;7; - 3} \right),D'\left( {3;0;3} \right)\). Tìm toạ độ các đỉnh \(D\) và \(A'\).

Xem lời giải >>
Bài 11 :

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {2;0;2} \right),B\left( {4;2;4} \right),D\left( {2; - 2;2} \right),C'\left( {8;10; - 10} \right)\). Tìm toạ độ điểm \(A'\).

Xem lời giải >>
Bài 12 :

Cho hình bình hành \(OABD\) có \(\overrightarrow {OA}  = \left( { - 1;1;0} \right)\) và \(\overrightarrow {OB}  = \left( {1;1;0} \right)\) với \(O\) là gốc toạ độ. Tìm toạ độ của điểm \(D\).

Xem lời giải >>
Bài 13 :

Cho tứ diện \(OABC\) có \(G\left( {3; - 3;6} \right)\) là trọng tâm. Tìm toạ độ điểm \(A\) thoả mãn \(\overrightarrow {AB}  = \left( {1;2;3} \right)\) và \(\overrightarrow {AC}  = \left( { - 1;4; - 2} \right)\).

Xem lời giải >>
Bài 14 :

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {2;4;0} \right),B\left( {4;0;0} \right),C\left( { - 1;4; - 7} \right)\) và \(D'\left( {6;8;10} \right)\). Tìm toạ độ của điểm \(B'\).

Xem lời giải >>
Bài 15 :

Cho điểm \(A\left( {2;2;1} \right)\). Tính độ dài đoạn thẳng \(OA\).

Xem lời giải >>
Bài 16 :

Cho điểm \(A\left( {1;2;3} \right)\). Tính khoảng cách từ \(A\) đến trục \(Oy\).

Xem lời giải >>
Bài 17 :

Cho điểm \(M\left( {3; - 1;2} \right)\). Tìm:

a) Toạ độ điểm \(M'\) là điểm đối xứng của điểm \(M\) qua gốc toạ độ \(O\).

b) Toạ độ điểm \(O'\) là điểm đối xứng của điểm \(O\) qua điểm \(M\).

c) Khoảng cách từ \(M\) đến gốc toạ độ.

d) Khoảng cách từ \(M\) đến mặt phẳng \(\left( {Oxz} \right)\).

Xem lời giải >>
Bài 18 :

Cho điểm \(M\left( {a;b;c} \right)\). Gọi \(A,B,C\) theo thứ tự là điểm đối xứng của điểm \(M\) qua các mặt phẳng \(\left( {Oxy} \right),\left( {Oyz} \right),\left( {Oxz} \right)\). Tìm toạ độ trọng tâm của tam giác \(ABC\).

Xem lời giải >>
Bài 19 :

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian \(Oxyz\) được minh hoạ như Hình 3. Cho biết \(OABC.DEFH\) là hình hộp chữ nhật và \(EMF.DNH\) là hình lăng trụ đứng.

a) Tìm toạ độ của các điểm \(B,F,H\).

b) Tìm toạ độ của các vectơ \(\overrightarrow {ME} ,\overrightarrow {MF} \).

c) Tính số đo \(\widehat {EMF}\).

Xem lời giải >>
Bài 20 :

Cho hai điểm \(A\left( {2;0;1} \right)\) và \(B\left( {0;5; - 1} \right)\). Tích vô hướng của hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) bằng

A. ‒2.

B. ‒1.

C. 1.

D. 2.

Xem lời giải >>
Bài 21 :

Cho ba vectơ \(\overrightarrow a  = \left( { - 1;1;0} \right),\overrightarrow b  = \left( {1;1;0} \right)\) và \(\overrightarrow c  = \left( {1;1;1} \right)\). Trong các khẳng định sau, khẳng định nào sai?

A. \(\left| {\overrightarrow a } \right| = \sqrt 2 \).

B. \(\left| {\overrightarrow c } \right| = \sqrt 3 \).

C. \(\overrightarrow a  \bot \overrightarrow b \).

D. \(\overrightarrow c  \bot \overrightarrow b \).

Xem lời giải >>
Bài 22 :

Cho hai vectơ \(\overrightarrow a  = \left( { - 3;4;0} \right)\) và \(\overrightarrow b  = \left( {5;0;12} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng

A. \(\frac{3}{{13}}\).

B. \(\frac{5}{6}\).

C. \( - \frac{5}{6}\).

D. \( - \frac{3}{{13}}\).

Xem lời giải >>
Bài 23 :

Góc giữa hai vectơ \(\overrightarrow i \) và \(\overrightarrow u  = \left( { - \sqrt 3 ;0;1} \right)\) bằng

A. \({30^ \circ }\).

B. \({60^ \circ }\).

C. \({120^ \circ }\).

D. \({150^ \circ }\).

Xem lời giải >>
Bài 24 :

Hai vectơ \(\overrightarrow a  = \left( {m;2;3} \right)\) và \(\overrightarrow b  = \left( {1;n;2} \right)\) cùng phương khi

A. \(\left\{ \begin{array}{l}m = \frac{1}{2}\\n = \frac{4}{3}\end{array} \right.\).

B. \(\left\{ \begin{array}{l}m = \frac{3}{2}\\n = \frac{4}{3}\end{array} \right.\).

C. \(\left\{ \begin{array}{l}m = \frac{3}{2}\\n = \frac{2}{3}\end{array} \right.\).

D. \(\left\{ \begin{array}{l}m = \frac{2}{3}\\n = \frac{4}{3}\end{array} \right.\).

Xem lời giải >>
Bài 25 :

Cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\). Trung điểm \(I\) của đoạn thẳng \(AB\) có toạ độ là

A. \(\left( {1;1;0} \right)\).

B. \(\left( {2;2;0} \right)\).

C. \(\left( { - 2; - 4;2} \right)\).

D. \(\left( { - 1; - 2;1} \right)\).

Xem lời giải >>
Bài 26 :

Cho hai vectơ \(\overrightarrow a  = \left( {1;1; - 2} \right),\overrightarrow b  = \left( { - 3;0; - 1} \right)\) và điểm \(A\left( {0;2;1} \right)\). Toạ độ điểm \(M\) thoả mãn \(\overrightarrow {AM}  = 2\overrightarrow a  - \overrightarrow b \) là

A. \(M\left( { - 5;1;2} \right)\).

B. \(M\left( {3; - 2;1} \right)\).

C. \(M\left( {1;4; - 2} \right)\).

D. \(M\left( {5;4; - 2} \right)\).

Xem lời giải >>
Bài 27 :

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng 2.
a) \(\overrightarrow {AB} = \overrightarrow {C'D'} \).
b) \(\overrightarrow {AB} + \overrightarrow {DC} = 2\overrightarrow {D'C'} \).
c) \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).
d) \(\overrightarrow {AC} .\overrightarrow {AD'} = 8\).

Xem lời giải >>
Bài 28 :

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho hai điểm \(A\left( {3; - 2;4} \right),B\left( {5;0;7} \right)\).
a) \(\overrightarrow {OA} = 3\overrightarrow i - 2\overrightarrow j + 4\overrightarrow k \).
b) \(\overrightarrow {AB} = \left( {8; - 2;11} \right)\).
c) Điểm \(B\) nằm trong mặt phẳng \(\left( {Oxz} \right)\).
d) \(2\overrightarrow {OB} = \left( {10;0;14} \right)\).

Xem lời giải >>
Bài 29 :

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho hai vectơ \(\overrightarrow a = \left( {2;1;5} \right)\) và \(\overrightarrow b = \left( {5;0; - 2} \right)\)
a) \(\left| {\overrightarrow a } \right| = \sqrt {30} \).
b) \(\overrightarrow a ,\overrightarrow b \)cùng phương.
c) \(\overrightarrow a + \overrightarrow b = \left( {7;1;3} \right)\).
d) \(\overrightarrow a .\overrightarrow b = 1\).

Xem lời giải >>
Bài 30 :

Chọn đúng hoặc sai cho mỗi ý a, b, c, d

Cho một lực \(\overrightarrow F  = \left( {4;6;9} \right)\) (đơn vị: \(N\)) thực hiện một độ dịch chuyển \(\overrightarrow d  = \left( {20;50;10} \right)\) (đơn vị: m).

a) Cường độ của lực \(\overrightarrow F \) là \(\sqrt {133} N\).

b) Độ dài quãng đường dịch chuyển là \(10\sqrt {30} m\).

c) Công sinh bởi lực \(\overrightarrow F \) khi thực hiện độ dời \(\overrightarrow d \) là \(10\sqrt {3990} J\).

d) \(\cos \left( {\overrightarrow F ,\overrightarrow d } \right) = \frac{{470}}{{10\sqrt {3990} }}\).

Xem lời giải >>