ƯU ĐÃI SỐC 50% HỌC PHÍ VÀ NHẬN "MIỄN PHÍ" BỘ SÁCH 21+ ĐỀ THỰC CHIẾN
Cho biểu thức: A=2√x−10−8√xx+5√x+√x√x+5 với x>0.
a) Rút gọn biểu thức A.
b) Chứng tỏ rằng giá trị của biểu thức A nhỏ hơn 2.
a) Khi rút gọn biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân, chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu).
b) Chứng minh rằng A−2<0 với x>0. Suy ra giá trị của biểu thức A nhỏ hơn 2.
a) Sử dụng tính chất giao hoán và tính chất kết hợp của phép cộng ta có:
A=(2√x+√x√x+5)−10−8√xx+5√x
=2(√x+5)+√x.√x√x(√x+5)−10−8√x√x(√x+5)
=2√x+10+x−10+8√x√x(√x+5)=10√x+x√x(√x+5)=√x+10√x+5
b) Xét hiệu A−2=√x+10√x+5−2=√x+10−2√x−10√x+5=−√x√x+5
Với x>0 thì A−2=−√x√x+5<0 với mọi x>0 nên giá trị của biểu thức A nhỏ hơn 2 với x>0.
Các bài tập cùng chuyên đề
Giá trị của biểu thức √(4−√5)2−√6−2√5 là:
Rút gọn biểu thức 5√a+2√a4−a√4a−√25a với a>0 ta được
Rút gọn biểu thức 2√a−√9a3+a2√16a+2a2√36a5 với a>0 ta được
Đẳng thức nào dưới đây là đúng?
Chọn khẳng định đúng?
Cho P=2√x+1.
Có bao nhiêu giá trị x∈Z để P∈Z ?
Rút gọn biểu thức 3√8a+14√32a25−a√3.√32a−√2a với a>0 ta được:
Giá trị của biểu thức √(√2+√5)2−√7−2√10.
Giá trị của biểu thức √17−12√2+√9+4√2.
Rút gọn biểu thức (12√a2−32√2a+45√200a):18 ta được:
Với a,b>0, đẳng thức nào dưới đây là đúng?
Chọn khẳng định đúng?
Cho P=√x+3√x−2 với x≥0;x≠4. Có bao nhiêu giá trị x∈Z để P∈Z.
Rút gọn biểu thức A=√1+1a2+1(a+1)2 với (a>0)
Rút gọn biểu thức: T=(√2a−2√2)(a−1)a−√a−2(a>0;a≠4)
Rút gọn biểu thức A=x+√x+1x+√x−2+1√x−1+1√x+2 với x≥0,x≠1.
Rút gọn các biểu thức sau:
a) √(3−√10)2
b) 2√a2+4a với a < 0
c) √a2+√(3−a)2 với 0 < a < 3
Hình vuông ABCD được chia thành hai hình vuông và hai hình chữ nhật như Hình 3.
a) Tính độ dài đường chéo của hai hình vuông AMIN và CEIF.
b) Tính độ dài đường chéo của hai hình vuông ABCD theo hai cách khác nhau.
Rút gọn các biểu thức sau:
a) √20−√5
b) √32−√18+4√2
c) (2−√10)(√2−√5)
Rút gọn các biểu thức sau:
a) 23√9x3+4x√x4−x2√1x với x > 0
b) a2−5a+√15 với a ≠−√5
Rút gọn các biểu thức sau:
a) 2√3−√27
b) √45−√20+√5
c) √64a−√18−a√9a+√50 với a > 0
Tính
a) (√43+√3)√6
b) √18:√6+√8.√272
c) (1−2√5)2
Chứng minh rằng:
a) a√b−b√a√ab:1√a+√b=a−b với a > 0; b > 0
b) (1+a+√a√a+1)(1−a−√a√a−1)=1−a với a ≥ 0 và a ≠1
Tam giác ABC được vẽ trên ô vuông như Hình 4. Tính diện tích và chu vi của tam giác ABC
Một vườn hoa gồm ba thửa hình vuông X, Y, Z lần lượt có diện tích như Hình 5. Tính chu vi của vườn hoa đó.
Cho a = 2√3+√2, b = 3√2−2√3. Rút gọn biểu thức √3a−√2b, ta có kết quả
A. 3√6
B. −√6
C. 6√3
D. 12−√6
Rút gọn biểu thức 12√a+√2−12√a−√2 với a≥0, a≠12, ta có kết quả
A. √21−2a
B. √22a−1
C. √a2a−1
D. √21−a
Tính √3+√2√3−√2−√3−√2√3+√2.
Cho hình hộp chữ nhật có chiều dài √12cm, chiều rộng√8cm, chiều cao √6 như Hình 2.
a) Tính thể tích của hình hộp chữ nhật đó.
b) Tính diện tích xung quanh của hình hộp chữ nhật đó.
Hãy chép lại và hoàn thành Bảng 3.2. Em có nhận xét gì về giá trị của √(x+1)(x+3) và √x+1.√x+3?