Đề bài

Chọn khẳng định đúng:

A. \(\sqrt {64{a^4}{b^6}}  = 8{a^2}{b^3}\).

B. \(\sqrt {64{a^4}{b^6}}  = 8{\left( { - a} \right)^2}{b^3}\).

C. \(\sqrt {64{a^4}{b^6}}  = 8{a^2}{\left( { - b} \right)^3}\).

D. \(\sqrt {64{a^4}{b^6}}  = 8{a^2}\left| {{b^3}} \right|\).

Phương pháp giải

Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B  = \sqrt {AB} \).

Lời giải của GV Loigiaihay.com

\(\sqrt {64{a^4}{b^6}}  = \sqrt {{8^2}.{{\left( {{a^2}} \right)}^2}.{{\left( {{b^3}} \right)}^2}}  \\= \sqrt {{8^2}} .\sqrt {{{\left( {{a^2}} \right)}^2}} .\sqrt {{{\left( {{b^3}} \right)}^2}}  = 8{a^2}\left| {{b^3}} \right|\)

Chọn D

Xem thêm : Vở thực hành Toán 9

Các bài tập cùng chuyên đề

Bài 1 :

Cho $a,b$ là hai số không âm. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 2 :

Rút gọn biểu thức  $\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} $ với $a \ge \dfrac{1}{2}$ ta được

Xem lời giải >>
Bài 3 :

Rút gọn biểu thức  $\sqrt {{a^2}.{{\left( {2a - 3} \right)}^2}} $ với $ 0 \le a < \dfrac{3}{2}$ ta được

Xem lời giải >>
Bài 4 :

Rút gọn biểu thức  $\sqrt {0,9.0,1.{{\left( {3 - x} \right)}^2}} $ với $x > 3$ ta được

Xem lời giải >>
Bài 5 :

Giá trị biểu thức  $\sqrt {x - 2} .\sqrt {x + 2} $ khi $x = \sqrt {29} $ là

Xem lời giải >>
Bài 6 :

Rút gọn biểu thức  $\dfrac{{\sqrt {{x^3} + 2{x^2}} }}{{\sqrt {x + 2} }}$ với $x > 0$ ta được

Xem lời giải >>
Bài 7 :

Với $x > 5$, cho biểu thức  $A = \dfrac{{\sqrt {{x^2} - 5x} }}{{\sqrt {x - 5} }}$ và $B = x$.

Có bao nhiêu giá trị của $x$ để $A = B$.

Xem lời giải >>
Bài 8 :

Với $x,y \ge 0;x \ne y$, rút gọn biểu thức  $A = \dfrac{{x - \sqrt {xy} }}{{x - y}}$  ta được

Xem lời giải >>
Bài 9 :

Giá trị của biểu thức  \((\sqrt {12}  + 2\sqrt {27} )\dfrac{{\sqrt 3 }}{2} - \sqrt {150} \)  là:

Xem lời giải >>
Bài 10 :

Với \(a \ge 0,b \ge 0,a \ne b\), rút gọn biểu thức  \(\dfrac{{a - b}}{{\sqrt a  - \sqrt b }} - \dfrac{{\sqrt {{a^3}}  + \sqrt {{b^3}} }}{{a - b}}\)  ta được:

Xem lời giải >>
Bài 11 :

Nghiệm của phương trình  \(\sqrt {4x - 20}  + \sqrt {x - 5}  - \dfrac{1}{3}\sqrt {9x - 45}  = 4\) là

Xem lời giải >>
Bài 12 :

Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 13 :

Rút gọn biểu thức  \(\sqrt {9{{\left( { - a} \right)}^2}.{{\left( {3 - 4a} \right)}^6}} \) với \(a \ge \dfrac{3}{4}\) ta được:

Xem lời giải >>
Bài 14 :

Giá trị biểu thức \(\sqrt {5x + 3} .\sqrt {5x - 3} \) khi \(x = \sqrt {3,6} \) là:

Xem lời giải >>
Bài 15 :

Rút gọn biểu thức  \(\dfrac{{\sqrt {9{x^5} + 33{x^4}} }}{{\sqrt {3x + 11} }}\) với \(x > 0\) ta được:

Xem lời giải >>
Bài 16 :

Với \(x > 0\) cho biểu thức  \(A = \dfrac{{\sqrt {{x^2} + 6x} }}{{\sqrt {x + 6} }}\)  và \(B = 2x\). Có bao nhiêu giá trị của \(x\) để \(A = B\).

Xem lời giải >>
Bài 17 :

Với \(x,y \ge 0;3x \ne y\), rút gọn biểu thức  \(B = \dfrac{{3x - \sqrt {3xy} }}{{3x - y}}\) ta được:

Xem lời giải >>
Bài 18 :

Giá trị của biểu thức  \(\sqrt {252}  - \sqrt {700}  + \sqrt {1008}  - \sqrt {448} \) là:

Xem lời giải >>
Bài 19 :

Với \(a \ge 0,b \ge 0,2a \ne 3b\), rút gọn biểu thức \(\dfrac{{2a + 3b}}{{\sqrt {2a}  + \sqrt {3b} }} + \dfrac{{\sqrt {8{a^3}}  - \sqrt {27{b^3}} }}{{3b - 2a}}\) ta được:

Xem lời giải >>
Bài 20 :

Nghiệm của phương trình \(\dfrac{3}{2}\sqrt {x - 1}  - \dfrac{1}{2}\sqrt {9{\rm{x}} - 9}  + 16\sqrt {\dfrac{{x - 1}}{{64}}}  = 12\) là:

Xem lời giải >>
Bài 21 :

Rút gọn biểu thức \(\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} \) với \(0 \le a < \dfrac{1}{2}\) ta được:

Xem lời giải >>
Bài 22 :

Rút gọn \(\sqrt {27.48.{{(1 - a)}^2}} \) với \(a > 1\)

Xem lời giải >>
Bài 23 :

Giá trị của biểu thức \(A = \sqrt {810.40}  + \sqrt {24} .\sqrt {12} .\sqrt {0,5} \) là:

Xem lời giải >>
Bài 24 :

Tính \(B = \left( {\sqrt {18}  + \sqrt {32}  - \sqrt {50} } \right).\sqrt 2 \)

Xem lời giải >>
Bài 25 :

Rút gọn \(A = \dfrac{{\sqrt {25 + x - 10\sqrt x } }}{{\sqrt {25 + x + 10\sqrt x } }}\)với \(x \ge 25\)

Xem lời giải >>
Bài 26 :

Cho \(P = \dfrac{{\sqrt {x - 5\sqrt x  + 6} }}{{\sqrt x  - 2}}\) với \(x \ge 9\). Tính \({P^2}.\)

Xem lời giải >>
Bài 27 :

Rút gọn \(P = \dfrac{1}{{\sqrt x  - 2}} + \dfrac{1}{{\sqrt x  + 2}} - \dfrac{4}{{x - 4}}\) với \(x \ge 0,\,\,\,x \ne 4\).

Xem lời giải >>
Bài 28 :

Tính giá trị của biểu thức \(A = \dfrac{{2\sqrt x }}{{\sqrt 5  + \sqrt 3 }}\) với \(x = 4 + \sqrt {15} \)

Xem lời giải >>
Bài 29 :

a) Tính \(\sqrt 3 .\sqrt {75} \)

b) Rút gọn \(\sqrt {5a{b^3}} .\sqrt {5ab} \) (với \(a < 0,b < 0\)) .

Xem lời giải >>
Bài 30 :

a) Tính nhanh \(\sqrt {25.49} .\)

b) Phân tích thành nhân tử: \(\sqrt {ab}  - 4\sqrt a \) (với \(a \ge 0,b \ge 0\) ) .

Xem lời giải >>