Đề bài

Rút gọn các phân số sau để được phân số tối giản (có sử dụng ước chung lớn nhất)

a) \(\frac{{28}}{{36}}\);

b) \(\frac{{63}}{{90}}\);

c) \(\frac{{40}}{{120}}\)

Phương pháp giải

Bước 1. Phân tích tử số và mẫu số ra thừa số nguyên tố, từ đó suy ra UCLN

Bước 2. Rút gọn phân số.

Lời giải của GV Loigiaihay.com

a) Ta có: \(28 = {2^2}.7\); \(36 = {2^2}{.3^2}\);

\(\begin{array}{l} \Rightarrow UCLN\left( {28,32} \right) = {2^2} = 4.\\ \Rightarrow \frac{{28}}{{36}} = \frac{{28:4}}{{36:4}} = \frac{7}{9}\end{array}\)

b) Ta có: \(63 = {3^2}.7\); \(90 = {2.3^2}.5\);

\(\begin{array}{l} \Rightarrow UCLN\left( {63,90} \right) = {3^2} = 9.\\ \Rightarrow \frac{{63}}{{90}} = \frac{{63:9}}{{90:9}} = \frac{7}{{10}}\end{array}\)

c) Ta có: \(120 = 40.3\);

\(\begin{array}{l} \Rightarrow UCLN\left( {40,120} \right) = 40\\ \Rightarrow \frac{{40}}{{120}} = \frac{{40:40}}{{120:40}} = \frac{1}{3}\end{array}\)

Xem thêm : Sách bài tập Toán lớp 6 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Rút gọn các phân số sau:\(\frac{{24}}{{108}};\,\,\frac{{80}}{{32}}\)

Xem lời giải >>
Bài 2 :

Rút gọn các phân số sau:

\(\frac{{28}}{{42}};\,\,\frac{{60}}{{135}};\,\,\frac{{288}}{{180}}\).

Xem lời giải >>
Bài 3 :

Rút gọn các phân số sau về phân số tối giản \(\frac{{60}}{{72}};\frac{{70}}{{95}};\frac{{150}}{{360}}\).

Xem lời giải >>
Bài 4 :

Phân số \(\frac{4}{9}\)  bằng các phân số nào trong các phân số sau: \(\frac{{48}}{{108}};\frac{{80}}{{180}};\frac{{60}}{{130}};\frac{{135}}{{270}}\).

Xem lời giải >>
Bài 5 :

a) Tìm ƯCLN(4,9).

b) Có thể rút gọn phân số \(\frac{4}{9}\) được nữa không?

Xem lời giải >>
Bài 6 :

Hai phân số \(\frac{{60}}{{135}}\)và \(\frac{4}{9}\) có bằng nhau không? Hãy giải thích.

Xem lời giải >>
Bài 7 :

Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng nếu chưa tối giản.

a)\(\frac{{21}}{{36}}\);                                                              

b)\(\frac{{23}}{{73}}\)

Xem lời giải >>
Bài 8 :

Rút gọn các phân số sau về phân số tối giản:

a)     \(\frac{{12}}{{24}};\frac{{13}}{{39}};\frac{{35}}{{105}}\)

b)    \(\frac{{120}}{{245}};\frac{{134}}{{402}};\frac{{213}}{{852}}\)

c)     \(\frac{{234}}{{1170}};\frac{{1221}}{{3663}};\frac{{2133}}{{31995}}\)

Xem lời giải >>
Bài 9 :

Các phân số sau đã là phân số tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản:

a) \(\frac{{50}}{{85}};\)

b) \(\frac{{23}}{{81}}.\)

Xem lời giải >>
Bài 10 :

Phân số nào sau đây là phân số tối giản?

A. \(\frac{{12}}{{20}}\)

B. \(\frac{{25}}{{40}}\)

C. \(\frac{{22}}{{81}}\)

D. \(\frac{{123}}{{345}}\).

Xem lời giải >>
Bài 11 :

Rút gọn các phân số sau để được phân số tối giản (có sử dụng ước chung lớn nhất):

a) \(\frac{{24}}{{146}};\)

b) \(\frac{{64}}{{92}};\)

c) \(\frac{{27}}{{63}};\)

d) \(\frac{{55}}{{185}}\);

e)\(\frac{{51}}{{150}}\) ;

g) \(\frac{{64}}{{156}}\).

Xem lời giải >>
Bài 12 :

Xét xem các phân số sau đã tối giản hay chưa? Nếu chưa, hãy rút gọn về phân số tối giản.

a) \(\frac{{15}}{{17}}\);

b) \(\frac{{70}}{{105}}\).

Xem lời giải >>
Bài 13 :

Các phân số sau đã là phân số tối giản hay chưa? Nếu chưa hãy rút gọn về phân số tối giản.

a) \(\frac{{27}}{{123}}\) ;

b) \(\frac{{33}}{{77}}\).

Xem lời giải >>
Bài 14 :

Phân số nào trong các phân số sau là phân số tối giản

Xem lời giải >>
Bài 15 :

Chứng minh phân số sau là phân số tối giãn với mọi số nguyên \(n\): \(\frac{{12n + 1}}{{30n + 2}}\)

Xem lời giải >>
Bài 16 :

Phân số nào sau đây là tối giản

Xem lời giải >>
Bài 17 :

Trong các phân số sau, phân số tối giản là:

Xem lời giải >>