Thanh tham dự một kì kiểm tra năng lực Tiếng Anh gồm 4 bài kiểm tra nghe, nói, đọc và viết. Mỗi bài kiểm tra có điểm là số nguyên từ 0 đến 10. Điểm trung bình của ba bài kiểm tra nghe, nói, đọc của Thanh là 6,7. Hỏi bài kiểm tra viết của Thanh cần được bao nhiêu điểm để điểm trung bình cả 4 bài kiểm tra từ 7,0 trở lên? Biết điểm trung bình được tính gần đúng đến chữ số thập phân thứ nhất.
+ Gọi x là số điểm Thanh làm được cho bài kiểm tra viết.
+ Từ dữ kiện đầu bài lập bất phương trình với ẩn x và giải bất phương trình đó và rút ra kết luận.
+ Chú ý: tổng điểm các bài thi = điểm trung bình của các bài thi đó nhân với số bài.
Gọi x là số điểm Thanh làm được cho bài kiểm tra viết. Vì điểm trung bình ba bài kiểm tra nghe, nói, đọc của Thanh là 6,7 nên tổng điểm ba bài kiểm tra nghe, nói, đọc của Thanh xấp xỉ 20,1. Do điểm bài kiểm tra là số nguyên, nên tổng điểm ba bài kiểm tra nghe, nói, đọc của Thanh là 20 điểm. Suy ra, tổng điểm của 4 bài kiểm tra nghe, nói, đọc và viết sẽ là \(20 + x\).
Do đó, điểm trung bình của 4 bài kiểm tra là \(\frac{{20 + x}}{4}\).
Để điểm trung bình của 4 bài kiểm tra từ 7,0 trở lên, ta có:
\(\frac{{20 + x}}{4} \ge 7\)
\(20 + x \ge 28\)
\(x \ge 8\)
Vậy bài kiểm tra viết của Thanh cần được ít nhất 8 điểm thì điểm trung bình của 4 bài kiểm tra từ 7,0 trở lên.
Các bài tập cùng chuyên đề
Hãy chọn câu đúng. Tập nghiệm của bất phương trình \(1 - 3x \ge 2 - x\) là:
Với giá trị của m thì phương trình $x - 2 = 3m + 4$ có nghiệm lớn hơn 3:
Số nguyên nhỏ nhất thỏa mãn bất phương trình $\dfrac{{x + 4}}{5} - x + 5 < \dfrac{{x + 3}}{3} - \dfrac{{x - 2}}{2}$ là
Bất phương trình $2{(x + 2)^2} < 2x(x + 2) + 4$ có nghiệm là
Kết luận nào sau đây là đúng khi nói về nghiệm của bất phương trình $\;(x + 3)(x + 4) > (x - 2)(x + 9) + 25$.
Tìm $x$ để phân thức \(\dfrac{4}{{9 - 3x}}\) không âm.
Tìm \(x\) để biểu thức sau có giá trị dương $A = \dfrac{{x + 27}}{5} - \dfrac{{3x - 7}}{4}$
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị âm.
Tìm \(x\) để $P = \dfrac{{x - 3}}{{x + 1}}$ có giá trị lớn hơn \(1\).
Tìm số nguyên $x$ thỏa mãn cả hai bất phương trình:
\(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\)
Với những giá trị nào của $x$ thì giá trị của biểu thức \({(x + 1)^2} - 4\) không lớn hơn giá trị của biểu thức \({(x - 3)^2}\).
Số nguyên lớn nhất thỏa mãn bất phương trình \(\dfrac{{1987 - x}}{{15}} + \dfrac{{1988 - x}}{{16}} + \dfrac{{27 + x}}{{1999}} + \dfrac{{28 + x}}{{2000}} > 4\) là
Hãy chọn câu đúng. Bất phương trình \(2 + 5x \ge - 1 - x\) có nghiệm là:
Với giá trị của \(m\) thì phương trình \(x - 1 = 3m + 4\) có nghiệm lớn hơn \(2\):
Số nguyên lớn nhất thỏa mãn bất phương trình \(x - \dfrac{{x + 5}}{2} \le \dfrac{{x + 4}}{6} - \dfrac{{x - 2}}{2}\) là:
Bất phương trình \({\left( {x + 2} \right)^2} < x + {x^2} - 3\) có nghiệm là:
Nghiệm của bất phương trình \((x + 3)(x + 4) > (x - 2)(x + 9) + 25\) là:
Giá trị của \(x\) để phân thức \(\dfrac{{12 - 4x}}{9}\) không âm là:
Giá trị của \(x\) để biểu thức sau có giá trị dương \(A = \dfrac{{ - x + 27}}{2} - \dfrac{{3x + 4}}{4}\) là:
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị không âm?
Giá trị của \(x\) để biểu thức \(P = \dfrac{{x - 3}}{{x + 1}}\) có giá trị không lớn hơn \(1\).
Số các giá trị nguyên của \(x\) thỏa mãn cả hai bất phương trình: \(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\) là:
Với những giá trị nào của \(x\) thì giá trị của biểu thức \({x^2} + 2x + 1\) lớn hơn giá trị của biểu thức \({x^2} - 6x + 13\).
Số nguyên nhỏ nhất thỏa mãn bất phương trình \(\dfrac{{2017 - x}}{{15}} + \dfrac{{2018 - x}}{{16}} + \dfrac{{17 + x}}{{2019}} + \dfrac{{18 + x}}{{2020}} \le 4\) là:
Xét bất phương trình \(5x + 3 < 0.\left( 1 \right)\)
Hãy thực hiện các yêu cầu sau để giải bất phương trình (1):
a) Sử dụng tính chất của bất đẳng thức, cộng vào hai vế của bất phương trình (1) với -3, ta được một bất phương trình, kí hiệu là (2).
b) Sử dụng tính chất của bất đẳng thức, nhân vào hai vế của bất phương trình (2) với \(\frac{1}{5}\) (tức là chia cả hai vế của bất phương trình (2) cho hệ số của x là 5) để tìm nghiệm của bất phương trình.
Giải các bất phương trình:
a) \(6x + 5 < 0;\)
b) \( - 2x - 7 > 0.\)
Giải các bất phương trình sau:
a) \(5x + 7 > 8x - 5;\)
b) \( - 4x + 3 \le 3x - 1.\)
Trong một cuộc thi tuyển dụng việc làm, ban tổ chức quy định mỗi người ứng tuyển phải trả lời 25 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi có sẵn bốn đáp án, trong đó chỉ có một đáp án đúng. Người ứng tuyển chọn đáp án đúng sẽ được cộng thêm 2 điểm, chọn đáp án sai bị trừ đi 1 điểm. Ở vòng sơ tuyển, ban tổ chức tặng cho mỗi người dự thi 5 điểm và theo quy định người ứng tuyển phải trả lời hết 25 câu hỏi; người nào có số điểm từ 25 điểm trở lên mới được dự thi vòng tiếp theo. Hỏi người ứng tuyển phải trả lời chính xác ít nhất bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được vào vòng tiếp theo?
Giải các bất phương trình sau:
a) \(x - 5 \ge 0;\)
b) \(x + 5 \le 0;\)
c) \( - 2x - 6 > 0;\)
d) \(4x - 12 < 0.\)
Giải các bất phương trình sau:
a) \(3x + 2 > 2x + 3;\)
b) \(5x + 4 < - 3x - 2.\)