Trên một mảnh đất có dạng hình chữ nhật với chiều dài là \(x\left( m \right)\), chiều rộng là \(y\left( m \right)\) với \(x > y > 4\), bác An dự định làm một vườn hoa hình chữ nhật và bớt ra một phần đường đi rộng 2 m như Hình 3. Viết phân thức biểu thị theo \(x;y\).
a) Tỉ số diện tích của mảnh đất và vườn hoa.
b) Tỉ số chu vi mảnh đất và vườn hoa.
Áp dụng phương pháp thực hiện phép nhân và phép chia đa thức để tính.
Chiều dài của vườn hoa là: \(x - 2 - 2 = x - 4\) (m)
Chiều rộng của vườn hoa là: \(y - 2 - 2 = y - 4\) (m)
a) Diện tích của mảnh vườn là: \(xy\left( {{m^2}} \right)\)
Diện tích vườn hoa là: \(\left( {x - 4} \right)\left( {y - 4} \right) = xy - 4x - 4y + 16\left( {{m^2}} \right)\)
Phân thức biểu thị tỉ số diện tích của mảnh đất và vườn hoa là:
\(\frac{{xy}}{{xy - 4x - 4y + 16}}\)
b) Chu vi của mảnh đất là: \(2\left( {x + y} \right)\left( m \right)\)
Chu vi của vườn hoa là: \(2\left( {x - 4 + y - 4} \right) = 2\left( {x + y - 8} \right)\left( m \right)\)
Phân thức biểu thị tỉ số chu vi của mảnh đất và vườn hoa là: \(\frac{{2\left( {x + y} \right)}}{{2\left( {x + y - 8} \right)}} = \frac{{x + y}}{{x + y - 8}}\)
Các bài tập cùng chuyên đề
Tính:
a) \(\dfrac{{4{x^2} + 2}}{{x - 2}} \cdot \dfrac{{3x + 2}}{{x - 4}} \cdot \dfrac{{4 - 2x}}{{2{x^2} + 1}}\)
b) \(\dfrac{{x + 3}}{x} \cdot \dfrac{{x + 2}}{{{x^2} + 6x + 9}}:\dfrac{{{x^2} - 4}}{{{x^2} + 3x}}\)
Làm thế nào để nhân, chia các phân thức đại số?
Thực hiện các phép tính sau:
a) \(\frac{{15{a^2}}}{{8bc}}.\frac{{4c}}{{5a{b^2}}}\)
b) \(\frac{{14{x^3}}}{{5y{z^3}}}:\frac{{7x}}{{15y{z^2}}}\)
c) \(\frac{{6t + 12}}{{10 - 5t}}.\frac{{t - 2}}{{t + 2}}\)
d) \(\frac{{m - 5}}{{{m^2} + 1}}:\left( {3m - 15} \right)\)
Thực hiện các phép tính sau:
a) \(\frac{{5a}}{{9b}}.\frac{{2a{c^2}}}{b}:\frac{{{c^3}}}{{8{b^3}}}\)
b) \(\frac{{{x^2} - 2xy}}{{x - y}}.\frac{{y - x}}{{3x - {x^2}}}:\frac{1}{{3 - x}}\)
c) \(\left( {\frac{{3x}}{{x + 1}} + 1} \right):\left( {1 - \frac{{15{x^2}}}{{1 - {x^2}}}} \right)\)
d) \(\left( {{m^2} - 1} \right).\left( {\frac{1}{{m + 1}} - \frac{1}{{m - 1}} + 1} \right)\)
Thực hiện các phép tính sau:
a) \(\frac{{{y^2} - 4y + 4}}{{3 - 9y}}.\frac{{3y - 1}}{{3{y^2} - 12}}\)
b) \(\frac{{{c^2} - {d^2}}}{{cd}}:\frac{1}{{cd + {d^2}}}\)
Rút gọn các biểu thức sau:
a) \(\left( {b - \frac{{{a^2} + {b^2}}}{{a + b}}} \right).\left( {\frac{{2b}}{a} - \frac{{4b}}{{a - b}}} \right)\)
b) \(\left( {\frac{{{x^2}}}{{{y^2}}} + \frac{y}{x}} \right):\left( {\frac{x}{{{y^2}}} - \frac{1}{y} + \frac{1}{x}} \right)\)
Thu gọn các biểu thức sau:
a) \(\frac{{16 - {a^2}}}{{{a^2} + 8a + 16}}:\frac{{a - 4}}{{2a + 4}}.\frac{{a + 4}}{{a + 2}}\);
b) \(\frac{{{a^2} - ab + {b^2}}}{{{b^2} - {a^2}}}.\frac{{a + b}}{{{a^3} + {b^3}}}:\frac{{a + b}}{{a - b}}\);
c) \(\left( {\frac{{2a}}{{a - 2}} - \frac{a}{{a + 2}}} \right).\frac{{{a^2} - 4}}{a}\);
d) \(\left( {\frac{1}{{{a^2}}} - \frac{1}{{ab}}} \right).\frac{{a{b^2}}}{{a - b}}\).
Tính:
a) \(\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\);
b) \(\left( {\frac{x}{{x + 1}} + 1} \right):\left( {1 - \frac{{3{x^2}}}{{1 - {x^2}}}} \right)\).
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:
a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\)
b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\)
c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\)
Tìm hai phân thức P, Q thoản mãn:
\(a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\)
\(b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\)
Cho hai phân thức \(P = \frac{{{x^2} + 6{\rm{x}} + 9}}{{{x^2} + 3{\rm{x}}}}\) và \(Q = \frac{{{x^2} + 3{\rm{x}}}}{{{x^2} - 9}}\)
a) Rút gọn P và Q
b) Sử dụng kết quả câu a, Tính P.Q và P:Q
Thực hiện phép tính:
\(\begin{array}{l}a)\frac{{4{\rm{x}} - 6}}{{5{{\rm{x}}^2} - x}}.\frac{{25{{\rm{x}}^2} - 10{\rm{x}} + 1}}{{27 + 8{{\rm{x}}^3}}}\\b)\frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}:\frac{{{{\left( {x + 5} \right)}^3}}}{{{x^2} - 9}}\end{array}\)