Đề bài

Một vật rơi từ do từ độ cao so với mặt đất là 78,4 mét. Bỏ qua sức cản không khí, quãng đường chuyển động s (mét) của vật rơi tự do sau thời gian t được biểu diễn gần đúng bởi công thức \(s = 4,9{t^2}\), trong đó t là thời gian tính bằng giây. Sau bao lâu kể từ khi bắt đầu rơi thì vật này chạm mặt đất? (Làm tròn kết quả đến chữ số hàng phần mười).

Phương pháp giải

+ Dựa vào đề bài lập phương trình.

+ Đua phương trình vừa lập về dạng phương trình tích \(\left( {at + b} \right)\left( {ct + d} \right) = 0\).

+ Để giải phương trình tích \(\left( {at + b} \right)\left( {ct + d} \right) = 0\), ta giải hai phương trình \(at + b = 0\) và \(ct + d = 0\).

+ Kết hợp với điều kiện của t và đưa ra kết luận.

Lời giải của GV Loigiaihay.com

Thời gian t (giây) \(\left( {t > 0} \right)\) để vật chạm đất là nghiệm của phương trình

\(4,9{t^2} = 78,4\)

\({t^2} = 78,4:4,9\)

\({t^2} = 16\)

\(\left( {t - 4} \right)\left( {t + 4} \right) = 0\)

\(t = 4\) (giây)

Vậy sau 4 giây kể từ khi bắt đầu rơi thì vật này chạm mặt đất.

Xem thêm : Vở thực hành Toán 9

Các bài tập cùng chuyên đề

Bài 1 :

Chọn khẳng định đúng.

Xem lời giải >>
Bài 2 :

Tích các nghiệm của phương trình \({x^3} + 4{x^2} + x - 6 = 0\) là

Xem lời giải >>
Bài 3 :

Nghiệm lớn nhất của phương trình \(\left( {{x^2} - 1} \right)\left( {2x - 1} \right) = \left( {{x^2} - 1} \right)\left( {x + 3} \right)\) là

Xem lời giải >>
Bài 4 :

Nghiệm nhỏ nhất của phương trình \({\left( {2x + 1} \right)^2} = {\left( {x - 1} \right)^2}\) là

Xem lời giải >>
Bài 5 :

Tập nghiệm của phương trình \(\left( {{x^2} + x} \right)\left( {{x^2} + x + 1} \right) = 6\) là

Xem lời giải >>
Bài 6 :

Tìm m để phương trình \(\left( {2m - 5} \right)x - 2{m^2} + 8 = 43\) có nghiệm \(x =  - 7\).

Xem lời giải >>
Bài 7 :

Tập nghiệm của phương trình

\({\left( {5{x^2} - 2x + 10} \right)^2} = {\left( {3{x^2} + 10x - 8} \right)^2}\) là:  

Xem lời giải >>
Bài 8 :

Biết rằng phương trình \({\left( {{x^2} - 1} \right)^2} = 4x + 1\) có nghiệm lớn nhất là \({x_0}\) . Chọn hẳng định đúng.

Xem lời giải >>
Bài 9 :

Cho phương trình $\left( 1 \right):$ \(x\left( {{x^2} - 4x + 5} \right) = 0\) và phương trình \(\left( 2 \right):\) \(\left( {{x^2} - 1} \right)\left( {{x^2} + 4x + 5} \right) = 0\).

Chọn khẳng định đúng.

Xem lời giải >>
Bài 10 :

Phương trình \({x^2} + x = 0\) có số nghiệm là

Xem lời giải >>
Bài 11 :

Phương trình \(2x + k = x - 1\) nhận \(x = 2\) là nghiệm khi

Xem lời giải >>
Bài 12 :

Giải phương trình: \(2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\)  ta được nghiệm \({x_0}.\) Chọn câu đúng.

Xem lời giải >>
Bài 13 :

Số nghiệm của phương trình \(\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\) là

Xem lời giải >>
Bài 14 :

Cho phương trình: \(\left( {4{m^2} - 9} \right)x = 2{m^2} + m - 3\) . Tìm m để phương trình có vô số nghiệm

Xem lời giải >>
Bài 15 :

Cho phương trình \(5 - 6\left( {2x - 3} \right) = x\left( {3 - 2x} \right) + 5\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 16 :

Tích các nghiệm của phương trình \({x^3} - 3{x^2} - x + 3 = 0\) là

Xem lời giải >>
Bài 17 :

Số nghiệm của phương trình \(\left( {{x^2} + 9} \right)\left( {x - 1} \right) = \left( {{x^2} + 9} \right)\left( {x + 3} \right)\) là

Xem lời giải >>
Bài 18 :

Nghiệm nhỏ nhất của phương trình \({\left( { - \dfrac{1}{2}x + 1} \right)^2} = {\left( {\dfrac{3}{2}x - 1} \right)^2}\) là

Xem lời giải >>
Bài 19 :

Tập nghiệm của phương trình \(\left( {{x^2} - x - 1} \right)\left( {{x^2} - x + 1} \right) = 3\) là

Xem lời giải >>
Bài 20 :

Tìm \(m\) để phương trình \(\left( {2m - 5} \right)x - 2{m^2} - 7 = 0\) nhận \(x = - 3\) làm nghiệm.

Xem lời giải >>
Bài 21 :

Số nghiệm của phương trình \({\left( {5{x^2} - 2x + 10} \right)^3} = {\left( {3{x^2} + 10x - 6} \right)^3}\) là:  

Xem lời giải >>
Bài 22 :

Biết rằng phương trình \({\left( {4{x^2} - 1} \right)^2} = 8x + 1\) có nghiệm lớn nhất là \({x_0}\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 23 :

Cho phương trình \({x^4} - 8{x^2} + 16 = 0\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 24 :

Giải các phương trình sau:

a) \(\left( {3x + 1} \right)\left( {2 - 4x} \right) = 0;\)

b) \({x^2} - 3x = 2x - 6.\)

Xem lời giải >>
Bài 25 :

Giải bài toán ở tình huống mở đầu.

Tình huống mở đầu: Trong một khu vườn hình vuông có cạnh bằng 15m người ta làm một lối đi xung quanh vườn có bề rộng là x (m) (H.2.1). Để diện tích phần đất còn lại là \(169{m^2}\) thì bề rộng x của lối đi là bao nhiêu?

Xem lời giải >>
Bài 26 :

Giải các phương trình sau:

a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)

b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)

Xem lời giải >>
Bài 27 :

Bác An có một mảnh đất hình chữ nhật với chiều dài 14m và chiều rộng 12m. Bác dự định xây nhà trên mảnh đất đó và dành một phần diện tích đất để làm sân vườn như hình 2.3. Biết diện tích đất làm nhà là \(100{m^2}.\) Hỏi x bằng bao nhiêu mét?

Xem lời giải >>
Bài 28 :

Giải các phương trình sau:

a) \(2\left( {x + 1} \right) = \left( {5x - 1} \right)\left( {x + 1} \right);\)

b) \(\left( { - 4x + 3} \right)x = \left( {2x + 5} \right)x.\)

Xem lời giải >>
Bài 29 :

Giải các phương trình sau:

a) \({\left( {3x - 1} \right)^2} - {\left( {x + 2} \right)^2} = 0;\)

b) \(x\left( {x + 1} \right) = 2\left( {{x^2} - 1} \right).\)

Xem lời giải >>
Bài 30 :

Giải các phương trình:

a) \(2x\left( {x + 6} \right) + 5\left( {x + 6} \right) = 0\);

b) \(x\left( {3x + 5} \right) - 6x - 10 = 0\).

Xem lời giải >>