Đề bài

Một quả táo có giá 20 nghìn đồng, một quả lê có giá 12 nghìn đồng. Bạn Chi có 200 nghìn đồng, bạn ấy muốn mua mỗi loại ít nhất 5 quả. Hỏi tổng số quả táo và lê nhiều nhất Chi có thể mua được là bao nhiêu?

Phương pháp giải

Gọi x là tổng số quả táo và lê bạn Chi có thể mua được.

Dựa vào dữ kiện đề bài để lập bất phương trình một ẩn

Giải bất phương trình bậc nhất một ẩn và kết luận.

Lời giải của GV Loigiaihay.com

Gọi x là tổng số quả táo và lê bạn Chi có thể mua được.

Mỗi loại bạn Chi mua ít nhất 5 quả và giá mỗi quả táo cao hơn mỗi quả lê, do đó bạn ấy nên mua 5 quả táo. Ta có:

\(\begin{array}{l}5.20 + 12(x - 5) \le 200\\12x \le 160\\x \le \frac{{40}}{3}( = 13\frac{1}{3})\end{array}\)

Vậy bạn Chi có thể mua nhiều nhất 13 quả táo và lê.

Xem thêm : SBT Toán 9 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Hãy chọn câu đúng. Tập nghiệm của bất phương trình \(1 - 3x \ge 2 - x\) là:

Xem lời giải >>
Bài 2 :

Với giá trị của m thì phương trình $x - 2 = 3m + 4$ có nghiệm lớn hơn 3:

Xem lời giải >>
Bài 3 :

Số nguyên nhỏ nhất thỏa mãn bất phương trình $\dfrac{{x + 4}}{5} - x + 5 < \dfrac{{x + 3}}{3} - \dfrac{{x - 2}}{2}$ là

Xem lời giải >>
Bài 4 :

Bất phương trình $2{(x + 2)^2} < 2x(x + 2) + 4$ có nghiệm là

Xem lời giải >>
Bài 5 :

Kết luận nào sau đây là đúng khi nói về nghiệm của bất phương trình $\;(x + 3)(x + 4) > (x - 2)(x + 9) + 25$.

Xem lời giải >>
Bài 6 :

Tìm $x$  để phân thức \(\dfrac{4}{{9 - 3x}}\) không âm.

Xem lời giải >>
Bài 7 :

Tìm \(x\) để biểu thức sau có giá trị dương $A = \dfrac{{x + 27}}{5} - \dfrac{{3x - 7}}{4}$

Xem lời giải >>
Bài 8 :

Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị âm.

Xem lời giải >>
Bài 9 :

Tìm \(x\) để  $P = \dfrac{{x - 3}}{{x + 1}}$ có giá trị lớn hơn \(1\).

Xem lời giải >>
Bài 10 :

Tìm số nguyên $x$  thỏa mãn cả hai bất phương trình:

\(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} >  - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\)

Xem lời giải >>
Bài 11 :

Với những giá trị nào của $x$  thì giá trị của biểu thức \({(x + 1)^2} - 4\) không lớn hơn giá trị của biểu thức \({(x - 3)^2}\).

Xem lời giải >>
Bài 12 :

Số nguyên lớn nhất thỏa mãn bất phương trình \(\dfrac{{1987 - x}}{{15}} + \dfrac{{1988 - x}}{{16}} + \dfrac{{27 + x}}{{1999}} + \dfrac{{28 + x}}{{2000}} > 4\) là

Xem lời giải >>
Bài 13 :

Hãy chọn câu đúng. Bất phương trình \(2 + 5x \ge  - 1 - x\) có nghiệm là:

Xem lời giải >>
Bài 14 :

Với giá trị của \(m\) thì phương trình \(x - 1 = 3m + 4\) có nghiệm lớn hơn \(2\):

Xem lời giải >>
Bài 15 :

Số nguyên lớn nhất thỏa mãn bất phương trình \(x - \dfrac{{x + 5}}{2} \le \dfrac{{x + 4}}{6} - \dfrac{{x - 2}}{2}\) là:

Xem lời giải >>
Bài 16 :

Bất phương trình \({\left( {x + 2} \right)^2} < x + {x^2} - 3\) có nghiệm là:

Xem lời giải >>
Bài 17 :

Nghiệm của bất phương trình \((x + 3)(x + 4) > (x - 2)(x + 9) + 25\) là:

Xem lời giải >>
Bài 18 :

Giá trị của \(x\) để phân thức \(\dfrac{{12 - 4x}}{9}\) không âm là:

Xem lời giải >>
Bài 19 :

Giá trị của \(x\) để biểu thức sau có giá trị dương \(A = \dfrac{{ - x + 27}}{2} - \dfrac{{3x + 4}}{4}\) là:

Xem lời giải >>
Bài 20 :

Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị không âm?

Xem lời giải >>
Bài 21 :

Giá trị của \(x\) để biểu thức \(P = \dfrac{{x - 3}}{{x + 1}}\) có giá trị không lớn hơn \(1\).

Xem lời giải >>
Bài 22 :

Số các giá trị nguyên của \(x\) thỏa mãn cả hai bất phương trình: \(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} >  - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\) là:

Xem lời giải >>
Bài 23 :

Với những giá trị nào của \(x\) thì giá trị của biểu thức \({x^2} + 2x + 1\) lớn hơn giá trị của biểu thức \({x^2} - 6x + 13\).

Xem lời giải >>
Bài 24 :

Số nguyên nhỏ nhất thỏa mãn bất phương trình \(\dfrac{{2017 - x}}{{15}} + \dfrac{{2018 - x}}{{16}} + \dfrac{{17 + x}}{{2019}} + \dfrac{{18 + x}}{{2020}} \le 4\) là:

Xem lời giải >>
Bài 25 :

Xét bất phương trình \(5x + 3 < 0.\left( 1 \right)\)

Hãy thực hiện các yêu cầu sau để giải bất phương trình (1):

a) Sử dụng tính chất của bất đẳng thức, cộng vào hai vế của bất phương trình (1) với -3, ta được một bất phương trình, kí hiệu là (2).

b) Sử dụng tính chất của bất đẳng thức, nhân vào hai vế của bất phương trình (2) với \(\frac{1}{5}\) (tức là chia cả hai vế của bất phương trình (2) cho hệ số của x là 5) để tìm nghiệm của bất phương trình.

Xem lời giải >>
Bài 26 :

Giải các bất phương trình:

a) \(6x + 5 < 0;\)

b) \( - 2x - 7 > 0.\)

Xem lời giải >>
Bài 27 :

Giải các bất phương trình sau:

a) \(5x + 7 > 8x - 5;\)

b) \( - 4x + 3 \le 3x - 1.\)

Xem lời giải >>
Bài 28 :

Trong một cuộc thi tuyển dụng việc làm, ban tổ chức quy định mỗi người ứng tuyển phải trả lời 25 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi có sẵn bốn đáp án, trong đó chỉ có một đáp án đúng. Người ứng tuyển chọn đáp án đúng sẽ được cộng thêm 2 điểm, chọn đáp án sai bị trừ đi 1 điểm. Ở vòng sơ tuyển, ban tổ chức tặng cho mỗi người dự thi 5 điểm và theo quy định người ứng tuyển phải trả lời hết 25 câu hỏi; người nào có số điểm từ 25 điểm trở lên mới được dự thi vòng tiếp theo. Hỏi người ứng tuyển phải trả lời chính xác ít nhất bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được vào vòng tiếp theo?

Xem lời giải >>
Bài 29 :

Giải các bất phương trình sau:

a) \(x - 5 \ge 0;\)

b) \(x + 5 \le 0;\)

c) \( - 2x - 6 > 0;\)

d) \(4x - 12 < 0.\)

Xem lời giải >>
Bài 30 :

Giải các bất phương trình sau:

a) \(3x + 2 > 2x + 3;\)

b) \(5x + 4 <  - 3x - 2.\)

Xem lời giải >>