Đề bài

Chữ số thập phân thứ 221 sau dấu “,” của số hữu tỉ \(\dfrac{1}{7}\) được viết dưới dạng số thập phân vô hạn tuần hoàn là chữ số nào?

Phương pháp giải

Muốn xác định chữ số thập phân thứ 221 sau dấu “,” ta cần xác định được chu kì tuần hoàn của số hữu tỉ đã cho.

Lời giải của GV Loigiaihay.com

Ta có: \(\dfrac{1}{7} = 1:7 = 0,142857142857... = 0,(142857)\).

Số hữu tỉ \(\dfrac{1}{7}\) có chu kì tuần hoàn là (142857) gồm 6 chữ số.

Mà \(221:6 = 36\) (dư 5) hay \(221 = 6.36 + 5\).

Suy ra: chữ số thập phân thứ 221 là chữ số thứ 5 trong chu kì tuần hoàn của số hữu tỉ \(\dfrac{1}{7}\).

Vậy chữ số thập phân thứ 221 sau dấu “,” của số hữu tỉ \(\dfrac{1}{7}\) được viết dưới dạng số thập phân vô hạn tuần hoàn là chữ số 5. 

Xem thêm : Sách bài tập Toán 7 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Thay dấu “?” bằng chữ số thích hợp.

Xem lời giải >>
Bài 2 :

So sánh:

a) 12,26 và 12,(24);                b) 31,3(5) và 29,9(8)

Xem lời giải >>
Bài 3 :

Chọn phát biểu đúng trong các phát biểu sau:

\(a)\sqrt 2  \in I;\,\,\,\,\,b)\sqrt 9  \in I;\,\,\,\,c)\,\pi  \in I;\,\,\,\,\,d)\sqrt 4  \in \mathbb{Q}\)

Xem lời giải >>
Bài 4 :

Xem lời giải >>
Bài 5 :

Nối mỗi phân số ở cột bên trái với cách viết thập phân của nó ở cột bên phải:

Xem lời giải >>
Bài 6 :

Sắp xếp các số sau theo thứ tự tăng dần: \(\sqrt {\dfrac{1}{{16}}} ;{\rm{ }}4\dfrac{1}{7};{\rm{ }}1,(3);{\rm{ }}\sqrt {81} ;{\rm{ }} - \sqrt {25} ;{\rm{ }} - 12,1\).

Xem lời giải >>
Bài 7 :

Trong các số thập phân sau, số nào là số thập phân hữu hạn? Số nào là số thập phân vô hạn tuần hoàn ?

0,1 ; -1,(23); 11,2(3); -6,725.

Xem lời giải >>
Bài 8 :

So sánh

a) 12,26 và 12,(24)

b) 31,3(5) và 29,9(8)

Xem lời giải >>
Bài 9 :

So sánh:

a) \(213,6(42)\) và \(213,598...\);

b) \( - 43,001\) và \( - 43,(001)\);

c) \( - \sqrt {237} \) và \( - 15\);

d) \(\sqrt {1\dfrac{{40}}{{81}}} \) và \(\sqrt {1\dfrac{{20}}{{101}}} \);

e) \(2 + \sqrt {37} \) và \(6 + \sqrt 2 \);

g) \(\dfrac{{\sqrt {{5^2}}  + \sqrt {{{15}^2}} }}{{\sqrt {{4^2}}  + \sqrt {{{36}^2}} }}\) và \(\dfrac{1}{{\sqrt {{2^2}} }}\).

Xem lời giải >>
Bài 10 :

Sắp xếp các số sau theo thứ tự tăng dần:
a) \( - 0,34;{\rm{ }} - 6,(25);{\rm{ }}1\dfrac{5}{9};{\rm{ }}\sqrt {169} ;{\rm{ }}\sqrt {15} \);
b) \(1,0(09);{\rm{ }}\sqrt {64} ;{\rm{ }}31\dfrac{1}{5};{\rm{ }} - 34,(5);{\rm{ }} - \sqrt {225} \).

Xem lời giải >>
Bài 11 :

Sắp xếp các số sau theo thứ tự giảm dần:

a) \(2\dfrac{1}{4};{\rm{ }}\sqrt {16} ;{\rm{ }} - \sqrt {83} ;{\rm{ }} - \sqrt {196} ;{\rm{ }} - 0,0(51)\);

b) \(21\dfrac{1}{6};{\rm{ }}\sqrt {49} ;{\rm{ }} - \sqrt {144} ;{\rm{ }} - 614,1;{\rm{ }} - 111,0(3)\).

Xem lời giải >>