Đề bài

a) \(\left\{ \begin{array}{l}0,5x + 2y =  - 2,5\\0,7x - 3y = 8,1\end{array} \right.\);

b) \(\left\{ \begin{array}{l}5x - 3y =  - 2\\14x + 8y = 19\end{array} \right.\);

c) \(\left\{ \begin{array}{l}2\left( {x - 2} \right) + 3\left( {1 + y} \right) =  - 2\\3\left( {x - 2} \right) - 2\left( {1 + y} \right) =  - 3\end{array} \right.\).

Phương pháp giải

a) Giải phương trình bằng phương pháp thế:

Bước 1: Từ một phương trình của hệ, biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình chỉ còn chứa một ẩn.

Bước 2: Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ đã cho.

b) Giải phương trình bằng phương pháp cộng đại số:

Để giải một hệ hai phương trình bậc nhất hai ẩn có hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau, ta có thể làm như sau:

Bước 1: Cộng hay trừ từng vế của hai phương trình trong hệ để được phương trình chỉ còn chứa một ẩn.

Bước 2: Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ đã cho.

c) + Đặt \(u = x - 2,v = 1 + y\), ta được một hệ phương trình mới với hai ẩn u, v.

+ Sử dụng phương pháp cộng đại số để giải hệ phương trình mới tìm u, v.

+ Tìm lại x, y dựa vào giá trị u, v vừa tìm được.

Lời giải của GV Loigiaihay.com

a) Từ phương trình thứ nhất của hệ ta có \(x =  - 5 - 4y\). Thế vào phương trình thứ hai của hệ, ta được \(0,7\left( { - 5 - 4y} \right) - 3y = 8,1\) hay \( - 5,8y - 3,5 = 8,1\), suy ra \(y =  - 2\).

Do đó, \(x =  - 5 - 4.\left( { - 2} \right) = 3\).

Vậy hệ phương trình đã cho có nghiệm (3; -2).

b) Nhân hai vế của phương trình thứ nhất với 8, nhân hai vế của phương trình thứ hai với 3, ta được hệ \(\left\{ \begin{array}{l}40x - 24y =  - 16\\42x + 24y = 57\end{array} \right.\)

Cộng từng vế hai phương trình của hệ mới, ta được \(82x = 41\), suy ra \(x = \frac{1}{2}\).

Thay \(x = \frac{1}{2}\) vào phương trình thứ nhất của hệ ban đầu ta có: \(5.\frac{1}{2} - 3y =  - 2\), suy ra \(y = \frac{3}{2}\)

Vậy hệ phương trình đã cho có nghiệm \(\left( {\frac{1}{2};\frac{3}{2}} \right)\).

c) Đặt \(u = x - 2,v = 1 + y\).

Khi đó, hệ phương trình đã cho trở thành hệ (*) \(\left\{ \begin{array}{l}2u + 3v =  - 2\\3u - 2v =  - 3\end{array} \right.\)

Giải hệ phương trình (*). Nhân hai vế của phương trình thứ nhất với 3, nhân hai vế của phương trình thứ hai với 2, ta được hệ \(\left\{ \begin{array}{l}6u + 9v =  - 6\\6u - 4v =  - 6\end{array} \right.\)

Trừ từng vế hai phương trình của hệ mới, ta được \(13v = 0\) hay \(v = 0\).

Thế \(v = 0\) vào phương trình thứ nhất của hệ (*), ta có: \(2u + 3.0 =  - 2\), suy ra \(u =  - 1\).

Từ đó, ta có:

\(u = x - 2 =  - 1\), suy ra \(x = 1\); \(v = 1 + y = 0\), suy ra \(y =  - 1\).

Vậy hệ phương trình đã cho có nghiệm (1; -1)

Xem thêm : Vở thực hành Toán 9

Các bài tập cùng chuyên đề

Bài 1 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x - y$

  • A.

    $x - y =  - 1$

  • B.

    $x - y = 1$

  • C.

    $x - y = 0$

  • D.

    $x - y = 2$

Xem lời giải >>

Bài 2 :

Cho hệ phương trình $\left\{ \begin{array}{l}\dfrac{2}{x} + y = 3\\\dfrac{1}{x} - 2y = 4\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{x}{y}$

  • A.

    $2$

  • B.

    $ - 2$

  • C.

    $ - \dfrac{1}{2}$

  • D.

    $\dfrac{1}{2}$

Xem lời giải >>

Bài 3 :

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5(x + 2y) - 3(x - y) = 99\\x - 3y = 7x - 4y - 17\end{array} \right.\)

  • A.

    $2$

  • B.

    Vô số 

  • C.

    $1$

  • D.

    $0$

Xem lời giải >>

Bài 4 :

Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}x + \dfrac{y}{2} = \dfrac{{2x - 3}}{2}\\\dfrac{x}{2} + 3y = \dfrac{{25 - 9y}}{8}\end{array} \right.\)

  • A.

    $x > 0;y < 0$

  • B.

    $x < 0;y < 0$

  • C.

    $x < 0;y > 0$

  • D.

    $x > 0;y > 0$

Xem lời giải >>

Bài 5 :

Tìm $a,b$ để hệ phương trình  $\left\{ \begin{array}{l}2ax + by =  - 1\\bx - ay = 5\end{array} \right.$

có nghiệm là $\left( {3; - 4} \right)$.

  • A.

    $a = \dfrac{1}{2};b = 1$

  • B.

    $a =  - \dfrac{1}{2};b = 1$

  • C.

    $a = \dfrac{1}{2};b =  - 1$

  • D.

    $a =  - \dfrac{1}{2};b =  - 1$

Xem lời giải >>

Bài 6 :

Nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{7}{{\sqrt x  - 7}} - \dfrac{4}{{\sqrt y  + 6}} = \dfrac{5}{3}\\\dfrac{5}{{\sqrt x  - 7}} + \dfrac{3}{{\sqrt y  + 6}} = 2\dfrac{1}{6}\end{array} \right.\) có tính chất là:

  • A.

    $x;y$ nguyên dương

  • B.

    $x;y$ là số vô tỉ

  • C.

    $x;y$ nguyên âm

  • D.

    $x$ nguyên dương, $y$ không âm

Xem lời giải >>

Bài 7 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( { - 4; - 2} \right);B\left( {2;1} \right)\).

  • A.

    \(a = 0;b = \dfrac{1}{2}\)

  • B.

    \(a = \dfrac{1}{2};b = 0\)

  • C.

    \(a = 1;b = 1\)

  • D.

    \(a =  - \dfrac{1}{2};b = \dfrac{1}{2}\)

Xem lời giải >>

Bài 8 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x + 3y =  - 2\\3x - 2y =  - 3\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x + y$

  • A.

    $x + y =  - 1$

  • B.

    $x + y = 1$

  • C.

    $x + y = 0$

  • D.

    $x + y = 2$

Xem lời giải >>

Bài 9 :

Cho hệ phương trình $\left\{ \begin{array}{l}x + \dfrac{1}{y} = 2\\2x - \dfrac{3}{y} = 1\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{{5x}}{y}$

  • A.

    $\dfrac{{35}}{3}$

  • B.

    $\dfrac{{21}}{5}$

  • C.

    $\dfrac{7}{3}$

  • D.

    $\dfrac{{21}}{{25}}$

Xem lời giải >>

Bài 10 :

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2(x + y) - 3(x - y) = 4\\x + 4y = 2x - y + 5\end{array} \right.\) là

  • A.

    $2$

  • B.

    Vô số

  • C.

    $1$

  • D.

    $0$

Xem lời giải >>

Bài 11 :

Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{{x + y}}{5} = \dfrac{{x - y}}{3}\\\dfrac{x}{4} = \dfrac{y}{2} + 1\end{array} \right..\) 

  • A.

    $x > 0;y < 0$

  • B.

    $x < 0;y < 0$

  • C.

    $x < 0;y > 0$

  • D.

    $x > 0;y > 0$

Xem lời giải >>

Bài 12 :

Tìm $a,b$ để hệ phương trình  $\left\{ \begin{array}{l}4ax + 2by =  - 3\\3bx + ay = 8\end{array} \right.$ có nghiệm là $\left( {2; - 3} \right)$.

  • A.

    $a = 1;b = 11$

  • B.

    $a =  - 1;b = \dfrac{{11}}{6}$

  • C.

    $a = 1;b =  - \dfrac{{11}}{6}$

  • D.

    $a = 1;b = \dfrac{{11}}{6}$

Xem lời giải >>

Bài 13 :

Nghiệm $\left( {x;y} \right)$của hệ phương trình  \(\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{1}{{y + 1}} = 2\\\dfrac{2}{{x - 2}} - \dfrac{3}{{y - 1}} = 1\end{array} \right.\) có tính chất là:

  • A.

    $x;y$  là số nguyên    

  • B.

    $x;y$ là số vô tỉ

  • C.

    $x;y$ là các phân số tối giản có tổng các tử số là \(27\)

  • D.

    $x$ nguyên dương, $y$ không âm

Xem lời giải >>

Bài 14 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 ;2} \right);B\left( {0;2} \right)\).

  • A.

    \(a = 0;b = 2\)      

  • B.

    \(a = \dfrac{1}{2};b = 0\)      

  • C.

    \(a = 1;b = 1\)

  • D.

    \(a =  - \dfrac{1}{2};b = \dfrac{1}{2}\)

Xem lời giải >>

Bài 15 :

Gọi \(\left( {{x_0};y{  _0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 3y =  - 7\\x + 2y =  - 4\end{array} \right.\). Tính \(S = {x_0} + {y_0}.\)

  • A.
    \(S =  - 5.\)
  • B.
    \(S =  - 1.\)
  • C.
    \(S = 1.\)
  • D.
    \(S = 5.\)
Xem lời giải >>

Bài 16 :

Cho hệ phương trình \(\left\{ \begin{align} & (a-2)x+5by=25 \\ & 2ax-(b-2)y=5 \\\end{align} \right.\). Tìm giá trị của a và b để hệ có nghiệm (x;y)=(3;-1).

  • A.
    \(a=2,\,b=-5\)              
  • B.
    \(a=-1,\,b=-4\)                     
  • C.
    \(a=3,\,b=4\)                                
  • D.
      \(a=-3,\,b=5\)
Xem lời giải >>

Bài 17 :

Bằng phương pháp cộng đại số, giải hệ phương trình \(\left\{ \begin{array}{l} - 0.5x + 0.5y = 1\\ - 2x + 2y = 8.\end{array} \right.\)

Xem lời giải >>

Bài 18 :

Cho hệ phương trình \(\left( {II} \right)\left\{ \begin{array}{l}2x + 2y = 3\\x - 2y = 6\end{array} \right..\) Ta thấy hệ số của y trong hai phương trình là hai số đối của nhau (tổng của chúng bằng 0) . Từ đặc điểm đó, hãy giải hệ phương trình đã cho theo hướng dẫn sau:

1. Cộng từng vế của hai phương trình trong hệ để được phương trình một ẩn x. Giải phương trình này để tìm x.

2. Sử dụng giá trị x tìm được, thay vào một trong hai phương trình của hệ để tìm giá trị của y rồi viết nghiệm của hệ phương trình đã cho. 

Xem lời giải >>

Bài 19 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l} - 4x + 3y = 0\\4x - 5y =  - 8;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + 3y = 0\\x + 3y = 9.\end{array} \right.\)

Xem lời giải >>

Bài 20 :

Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 6\\ - 5x + 2y =  4\end{array} \right.\) bằng phương pháp cộng đại số. 

Xem lời giải >>

Bài 21 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số;

a) \(\left\{ \begin{array}{l}3x + 2y = 6\\2x - 2y = 14;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5;\end{array} \right.\)

c) \(\left\{ \begin{array}{l} - 2x + 6y = 8\\3x - 9y =  - 12.\end{array} \right.\)

Xem lời giải >>

Bài 22 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 2{m^2}x + 9y = 3\left( {m + 3} \right)\end{array} \right.,\) trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau:

a) \(m =  - 2;\)

b) \(m =  - 3;\)

c) \(m = 3.\)

Xem lời giải >>

Bài 23 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l}5x + 7y = - 1\\3x + 2y = - 5;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}2x - 3y = 11\\ - 0,8x + 1,2y = 1;\end{array} \right.\)

c) \(\left\{ \begin{array}{l}4x - 3y = 6\\0,4x + 0,2y = 0,8.\end{array} \right.\)

Xem lời giải >>

Bài 24 :

Tìm a và b sao cho hệ phương trình \(\left\{ \begin{array}{l}ax + by = 1\\ax + \left( {2 - b} \right)y = 3\end{array} \right.\) có nghiệm là \(\left( {1; - 2} \right).\)

Xem lời giải >>

Bài 25 :

Kí hiệu \(\left( {{d_1}} \right)\) là đường thẳng \(x + 2y = 4,\left( {{d_2}} \right)\) là đường thẳng \(x - y = 1\).

a) Vẽ \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) trên cùng một mặt phẳng tọa độ.

b) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 4\\x - y = 1\end{array} \right.\) để tìm tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\).

Xem lời giải >>

Bài 26 :

Cho hai hệ phương trình:

\(\left\{ {\begin{array}{*{20}{c}}{3x = 6}\\{x + y = 5}\end{array}} \right.\) (I) và \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1}\\{x + y = 5}\end{array}} \right.\)(II)

a) Giải hệ phương trình (I) và hệ phương trình (II) bằng phương pháp thế. Có nhận xét gì về nghiệm của hai hệ này?

b) Bằng cách cộng từng vế của hai phương trình của hệ (II), ta nhận được một phương trình mới. Thay phương trình thứ nhất của hệ (II) bằng phương trình mới đó. Có nhận xét gì về kết quả nhận được?

Xem lời giải >>

Bài 27 :

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y =  - 14}\\{2x + 3y = 2}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{4x + 5y = 15}\\{6x - 4y = 11}\end{array}} \right.\)

Xem lời giải >>

Bài 28 :

Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A(2;-2) và B(-1;3).

Xem lời giải >>

Bài 29 :

Cho hệ phương trình: \(\left\{ \begin{array}{l}x + y = 7\,\,\,\,\left( 1 \right)\\x - y = 1\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\,\,\,\,\,\left( {II} \right)\)

a. Các hệ số của \(y\) trong hai phương trình (1) và (2) có đặc điểm gì?

b. Cộng từng vế hai phương trình của hệ (II), ta nhận được phương trình nào?

c. Giải phương trình nhận được ở câu b. Từ đó, ta tìm được nghiệm của hệ phương trình (II).

Xem lời giải >>

Bài 30 :

Giải hệ phương trình: \(\left\{ \begin{array}{l}3x + 2y = 5\,\,\,\,\,\left( 1 \right)\\5x + 2y = 7\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Xem lời giải >>