Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l}0,7x + 0,5y = 1,2\\ - x + 2y = 1\end{array} \right.\)      

b) \(\left\{ \begin{array}{l}5x + 2y = 2\\ - 15x - 6y =  - 4\end{array} \right.\)

Phương pháp giải

Bước 1. (Làm cho hai hệ số của một ẩn nào đó bằng nhau hoặc đối nhau) Nhân hai

vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

Bước 2. (Đưa về phương trình một ẩn) Cộng (hay trừ) từng vế hai phương trình của hệ phương trình nhận được ở Bước 1 để nhận được một phương trình mà hệ số của một trong hai ẩn bằng 0, tức là nhận được phương trình một ẩn. Giải phương trình một ẩn đó.

Bước 3. (Tìm ẩn còn lại và kết luận) Thay giá trị vừa tìm được của ẩn đó ở Bước 2 vào một trong hai phương trình của hệ đã cho để tìm giá trị của ẩn còn lại. Từ đó, ta tìm được nghiệm của hệ phương trình đã cho.

Lời giải của GV Loigiaihay.com

a) \(\left\{ \begin{array}{l}0,7x + 0,5y = 1,2\left( 1 \right)\\ - x + 2y = 1\left( 2 \right)\end{array} \right.\)

Nhân 2 vế của phương trình (1) với 4 và giữ nguyên phương trình (2), ta được hệ phương trình sau:\(\left\{ \begin{array}{l}2,8x + 2y = 4,8\left( 3 \right)\\ - x + 2y = 1\left( 4 \right)\end{array} \right.\)

Trừ từng vế của hai phương trình (3) và (4) ta nhận được phương trình:

\(3,8x = 3,8\) hay \(x = 1.\)

Thay \(x = 1\) vào phương trình (2), ta có \( - 1 + 2y = 1\) hay \(2y = 2\), do đó \(y = 1.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {1;1} \right).\)

b) \(\left\{ \begin{array}{l}5x + 2y = 2\left( 1 \right)\\ - 15x - 6y =  - 4\left( 2 \right)\end{array} \right.\)

Nhân 2 vế của phương trình (1) với 3 và giữ nguyên phương trình (2), ta được hệ phương trình sau:\(\left\{ \begin{array}{l}15x + 6y = 6\left( 3 \right)\\ - 15x - 6y =  - 4\left( 4 \right)\end{array} \right.\)

Cộng từng vế của hai phương trình (3) và (4) ta nhận được phương trình: \(0 = 2\) (vô lý).

Vậy hệ phương trình đã cho vô nghiệm.

Xem thêm : SBT Toán 9 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x - y$

  • A.

    $x - y =  - 1$

  • B.

    $x - y = 1$

  • C.

    $x - y = 0$

  • D.

    $x - y = 2$

Xem lời giải >>

Bài 2 :

Cho hệ phương trình $\left\{ \begin{array}{l}\dfrac{2}{x} + y = 3\\\dfrac{1}{x} - 2y = 4\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{x}{y}$

  • A.

    $2$

  • B.

    $ - 2$

  • C.

    $ - \dfrac{1}{2}$

  • D.

    $\dfrac{1}{2}$

Xem lời giải >>

Bài 3 :

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5(x + 2y) - 3(x - y) = 99\\x - 3y = 7x - 4y - 17\end{array} \right.\)

  • A.

    $2$

  • B.

    Vô số 

  • C.

    $1$

  • D.

    $0$

Xem lời giải >>

Bài 4 :

Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}x + \dfrac{y}{2} = \dfrac{{2x - 3}}{2}\\\dfrac{x}{2} + 3y = \dfrac{{25 - 9y}}{8}\end{array} \right.\)

  • A.

    $x > 0;y < 0$

  • B.

    $x < 0;y < 0$

  • C.

    $x < 0;y > 0$

  • D.

    $x > 0;y > 0$

Xem lời giải >>

Bài 5 :

Tìm $a,b$ để hệ phương trình  $\left\{ \begin{array}{l}2ax + by =  - 1\\bx - ay = 5\end{array} \right.$

có nghiệm là $\left( {3; - 4} \right)$.

  • A.

    $a = \dfrac{1}{2};b = 1$

  • B.

    $a =  - \dfrac{1}{2};b = 1$

  • C.

    $a = \dfrac{1}{2};b =  - 1$

  • D.

    $a =  - \dfrac{1}{2};b =  - 1$

Xem lời giải >>

Bài 6 :

Nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{7}{{\sqrt x  - 7}} - \dfrac{4}{{\sqrt y  + 6}} = \dfrac{5}{3}\\\dfrac{5}{{\sqrt x  - 7}} + \dfrac{3}{{\sqrt y  + 6}} = 2\dfrac{1}{6}\end{array} \right.\) có tính chất là:

  • A.

    $x;y$ nguyên dương

  • B.

    $x;y$ là số vô tỉ

  • C.

    $x;y$ nguyên âm

  • D.

    $x$ nguyên dương, $y$ không âm

Xem lời giải >>

Bài 7 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( { - 4; - 2} \right);B\left( {2;1} \right)\).

  • A.

    \(a = 0;b = \dfrac{1}{2}\)

  • B.

    \(a = \dfrac{1}{2};b = 0\)

  • C.

    \(a = 1;b = 1\)

  • D.

    \(a =  - \dfrac{1}{2};b = \dfrac{1}{2}\)

Xem lời giải >>

Bài 8 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x + 3y =  - 2\\3x - 2y =  - 3\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x + y$

  • A.

    $x + y =  - 1$

  • B.

    $x + y = 1$

  • C.

    $x + y = 0$

  • D.

    $x + y = 2$

Xem lời giải >>

Bài 9 :

Cho hệ phương trình $\left\{ \begin{array}{l}x + \dfrac{1}{y} = 2\\2x - \dfrac{3}{y} = 1\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{{5x}}{y}$

  • A.

    $\dfrac{{35}}{3}$

  • B.

    $\dfrac{{21}}{5}$

  • C.

    $\dfrac{7}{3}$

  • D.

    $\dfrac{{21}}{{25}}$

Xem lời giải >>

Bài 10 :

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2(x + y) - 3(x - y) = 4\\x + 4y = 2x - y + 5\end{array} \right.\) là

  • A.

    $2$

  • B.

    Vô số

  • C.

    $1$

  • D.

    $0$

Xem lời giải >>

Bài 11 :

Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{{x + y}}{5} = \dfrac{{x - y}}{3}\\\dfrac{x}{4} = \dfrac{y}{2} + 1\end{array} \right..\) 

  • A.

    $x > 0;y < 0$

  • B.

    $x < 0;y < 0$

  • C.

    $x < 0;y > 0$

  • D.

    $x > 0;y > 0$

Xem lời giải >>

Bài 12 :

Tìm $a,b$ để hệ phương trình  $\left\{ \begin{array}{l}4ax + 2by =  - 3\\3bx + ay = 8\end{array} \right.$ có nghiệm là $\left( {2; - 3} \right)$.

  • A.

    $a = 1;b = 11$

  • B.

    $a =  - 1;b = \dfrac{{11}}{6}$

  • C.

    $a = 1;b =  - \dfrac{{11}}{6}$

  • D.

    $a = 1;b = \dfrac{{11}}{6}$

Xem lời giải >>

Bài 13 :

Nghiệm $\left( {x;y} \right)$của hệ phương trình  \(\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{1}{{y + 1}} = 2\\\dfrac{2}{{x - 2}} - \dfrac{3}{{y - 1}} = 1\end{array} \right.\) có tính chất là:

  • A.

    $x;y$  là số nguyên    

  • B.

    $x;y$ là số vô tỉ

  • C.

    $x;y$ là các phân số tối giản có tổng các tử số là \(27\)

  • D.

    $x$ nguyên dương, $y$ không âm

Xem lời giải >>

Bài 14 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 ;2} \right);B\left( {0;2} \right)\).

  • A.

    \(a = 0;b = 2\)      

  • B.

    \(a = \dfrac{1}{2};b = 0\)      

  • C.

    \(a = 1;b = 1\)

  • D.

    \(a =  - \dfrac{1}{2};b = \dfrac{1}{2}\)

Xem lời giải >>

Bài 15 :

Gọi \(\left( {{x_0};y{  _0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 3y =  - 7\\x + 2y =  - 4\end{array} \right.\). Tính \(S = {x_0} + {y_0}.\)

  • A.
    \(S =  - 5.\)
  • B.
    \(S =  - 1.\)
  • C.
    \(S = 1.\)
  • D.
    \(S = 5.\)
Xem lời giải >>

Bài 16 :

Cho hệ phương trình \(\left\{ \begin{align} & (a-2)x+5by=25 \\ & 2ax-(b-2)y=5 \\\end{align} \right.\). Tìm giá trị của a và b để hệ có nghiệm (x;y)=(3;-1).

  • A.
    \(a=2,\,b=-5\)              
  • B.
    \(a=-1,\,b=-4\)                     
  • C.
    \(a=3,\,b=4\)                                
  • D.
      \(a=-3,\,b=5\)
Xem lời giải >>

Bài 17 :

Bằng phương pháp cộng đại số, giải hệ phương trình \(\left\{ \begin{array}{l} - 0.5x + 0.5y = 1\\ - 2x + 2y = 8.\end{array} \right.\)

Xem lời giải >>

Bài 18 :

Cho hệ phương trình \(\left( {II} \right)\left\{ \begin{array}{l}2x + 2y = 3\\x - 2y = 6\end{array} \right..\) Ta thấy hệ số của y trong hai phương trình là hai số đối của nhau (tổng của chúng bằng 0) . Từ đặc điểm đó, hãy giải hệ phương trình đã cho theo hướng dẫn sau:

1. Cộng từng vế của hai phương trình trong hệ để được phương trình một ẩn x. Giải phương trình này để tìm x.

2. Sử dụng giá trị x tìm được, thay vào một trong hai phương trình của hệ để tìm giá trị của y rồi viết nghiệm của hệ phương trình đã cho. 

Xem lời giải >>

Bài 19 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l} - 4x + 3y = 0\\4x - 5y =  - 8;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + 3y = 0\\x + 3y = 9.\end{array} \right.\)

Xem lời giải >>

Bài 20 :

Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 6\\ - 5x + 2y =  4\end{array} \right.\) bằng phương pháp cộng đại số. 

Xem lời giải >>

Bài 21 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số;

a) \(\left\{ \begin{array}{l}3x + 2y = 6\\2x - 2y = 14;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5;\end{array} \right.\)

c) \(\left\{ \begin{array}{l} - 2x + 6y = 8\\3x - 9y =  - 12.\end{array} \right.\)

Xem lời giải >>

Bài 22 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 2{m^2}x + 9y = 3\left( {m + 3} \right)\end{array} \right.,\) trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau:

a) \(m =  - 2;\)

b) \(m =  - 3;\)

c) \(m = 3.\)

Xem lời giải >>

Bài 23 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l}5x + 7y = - 1\\3x + 2y = - 5;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}2x - 3y = 11\\ - 0,8x + 1,2y = 1;\end{array} \right.\)

c) \(\left\{ \begin{array}{l}4x - 3y = 6\\0,4x + 0,2y = 0,8.\end{array} \right.\)

Xem lời giải >>

Bài 24 :

Tìm a và b sao cho hệ phương trình \(\left\{ \begin{array}{l}ax + by = 1\\ax + \left( {2 - b} \right)y = 3\end{array} \right.\) có nghiệm là \(\left( {1; - 2} \right).\)

Xem lời giải >>

Bài 25 :

Kí hiệu \(\left( {{d_1}} \right)\) là đường thẳng \(x + 2y = 4,\left( {{d_2}} \right)\) là đường thẳng \(x - y = 1\).

a) Vẽ \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) trên cùng một mặt phẳng tọa độ.

b) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 4\\x - y = 1\end{array} \right.\) để tìm tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\).

Xem lời giải >>

Bài 26 :

Cho hai hệ phương trình:

\(\left\{ {\begin{array}{*{20}{c}}{3x = 6}\\{x + y = 5}\end{array}} \right.\) (I) và \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1}\\{x + y = 5}\end{array}} \right.\)(II)

a) Giải hệ phương trình (I) và hệ phương trình (II) bằng phương pháp thế. Có nhận xét gì về nghiệm của hai hệ này?

b) Bằng cách cộng từng vế của hai phương trình của hệ (II), ta nhận được một phương trình mới. Thay phương trình thứ nhất của hệ (II) bằng phương trình mới đó. Có nhận xét gì về kết quả nhận được?

Xem lời giải >>

Bài 27 :

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y =  - 14}\\{2x + 3y = 2}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{4x + 5y = 15}\\{6x - 4y = 11}\end{array}} \right.\)

Xem lời giải >>

Bài 28 :

Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A(2;-2) và B(-1;3).

Xem lời giải >>

Bài 29 :

Cho hệ phương trình: \(\left\{ \begin{array}{l}x + y = 7\,\,\,\,\left( 1 \right)\\x - y = 1\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\,\,\,\,\,\left( {II} \right)\)

a. Các hệ số của \(y\) trong hai phương trình (1) và (2) có đặc điểm gì?

b. Cộng từng vế hai phương trình của hệ (II), ta nhận được phương trình nào?

c. Giải phương trình nhận được ở câu b. Từ đó, ta tìm được nghiệm của hệ phương trình (II).

Xem lời giải >>

Bài 30 :

Giải hệ phương trình: \(\left\{ \begin{array}{l}3x + 2y = 5\,\,\,\,\,\left( 1 \right)\\5x + 2y = 7\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Xem lời giải >>