Bác Lan dự định dùng hết số tiền 480 nghìn đồng để mua gạo nếp gói bánh chưng nhân dịp tết Nguyên đán. Khi đến cửa hàng, loại gạo mà bác Lan dự định mua đã tăng 2 nghìn đồng/kg. Do vậy, bác Lan đã mua lượng gạo giảm \(\frac{1}{{16}}\) lần so với dự định. Tính giá tiền mỗi kilôgam gạo mà bác Lan đã mua.
Bước 1: Gọi giá tiền mỗi kilôgam gạo mà bác Lan đã mua là \(x\) (nghìn đồng, \(2 < x < 480\)).
Bước 2: Biểu diễn số gạo dự định và thực tế mua được.
Bước 3: Lượng gạo đã mua giảm \(\frac{1}{{16}}\) lần so với dự định tức là lượng gạo đã mua bằng \(\frac{{15}}{{16}}\) lượng gạo dự định.
Bước 4: Lập phương trình.
Bước 5: Giải phương trình và đối chiếu điều kiện.
Gọi giá tiền mỗi kilôgam gạo mà bác Lan đã mua là \(x\) (nghìn đồng, \(2 < x < 480\)).
Số gạo bác Lan thực tế mua được là: \(\frac{{480}}{x}\)(kg).
Lúc chưa tăng, giá tiền mỗi kilogam gạo có giá là \(x - 2\) (nghìn đồng).
Số gạo bác Lan dự định mua được là: \(\frac{{480}}{{x - 2}}\)(kg).
Do bác Lan đã mua lượng gạo giảm \(\frac{1}{{16}}\) lần so với dự định tức là lượng gạo đã mua bằng \(\frac{{15}}{{16}}\) lượng gạo dự định nên ta có phương trình:
\(\begin{array}{l}\frac{{480}}{x} = \frac{{15}}{{16}}.\frac{{480}}{{x - 2}}\\\frac{1}{x} = \frac{{15}}{{16(x - 2)}}\\16\left( {x - 2} \right) = 15x\\x = 32\end{array}\)
Ta thấy \(x = 32\) thỏa mãn điều kiện nên giá tiền mỗi kilôgam gạo mà bác Lan đã mua là 32 nghìn đồng.
Các bài tập cùng chuyên đề
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Trong các khẳng định sau, số khẳng định đúng là:
a) Tập nghiệm của phương trình \(\dfrac{{{x^2} + 3x}}{x} = 0\) là \(\left\{ {0; - 3} \right\}\).
b) Tập nghiệm của phương trình \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\) là \(\left\{ { - 2} \right\}\).
c) Tập nghiệm của phương trình \(\dfrac{{x - 8}}{{x - 7}} = \dfrac{1}{{7 - x}} + 8\) là \(\left\{ 0 \right\}\).
Số nghiệm của phương trình \(\dfrac{{x - 5}}{{x - 1}} + \dfrac{2}{{x - 3}} = 1\) là
Phương trình \(\dfrac{{3x - 5}}{{x - 1}} - \dfrac{{2x - 5}}{{x - 2}} = 1\) có số nghiệm là
Cho phương trình $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$ . Bạn Long giải phương trình như sau:
Bước 1: ĐKXĐ $x \ne 1;\,x \ne 2$
Bước 2: $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$
\(\dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{ -1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Bước 3: Suy ra
\(x - 2 - 7x + 7 = - 1 \\- 6x = - 6 \\x = 1\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\).
Chọn câu đúng.
Cho hai biểu thức : \(A = 1 + \dfrac{1}{{2 + x}}\) và \(B = \dfrac{{12}}{{{x^3} + 8}}\) . Tìm $x$ sao cho \(A = B\) .
Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\). Khẳng định nào sau đây là đúng.
Biết \({x_0}\) là nghiệm nhỏ nhất của phương trình
\(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}.\) Chọn khẳng định đúng.
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Phương trình \(\dfrac{x}{{x - 5}} - \dfrac{3}{{x - 2}} = 1\) có nghiệm là
Số nghiệm của phương trình \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\) là
Tập nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 1}} - 2 = x\) là
Phương trình \(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\) có tập nghiệm là
Tập nghiệm của phương trình \(\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\) là
Phương trình \(\dfrac{3}{{1 - 4x}} = \dfrac{2}{{4x + 1}} - \dfrac{{8 + 6x}}{{16{x^2} - 1}}\) có nghiệm là
Số nghiệm của phương trình \(\dfrac{3}{{5x - 1}} + \dfrac{2}{{3 - 5x}} = \dfrac{4}{{\left( {1 - 5x} \right)\left( {5x - 3} \right)}}\) là
Cho hai phương trình \(\dfrac{{{x^2} + 2x}}{x} = 0\,\left( 1 \right)\) và \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\,\left( 2 \right)\). Chọn kết luận đúng:
Phương trình \(\dfrac{2}{{x + 1}} + \dfrac{x}{{3x + 3}} = 1\) có số nghiệm là
Cho phương trình \(\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\). Bạn Long giải phương trình như sau:
Bước 1: ĐKXD \(x \ne 1;\,x \ne 2\)
Bước 2: \(\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\)
\( \dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Bước 3: Suy ra \(x - 2 - 7x + 7 = 1\)
\( - 6x = - 4 \\x = \dfrac{2}{3}\left( {TM} \right)\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {\dfrac{2}{3}} \right\}\).
Chọn câu đúng.
Cho hai biểu thức: \(A = 1 - \dfrac{1}{{2 - x}}\) và \(B = \dfrac{{12}}{{{x^3} - 8}}\). Giá trị của \(x\) để \(A = B\) là:
Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{{x^2} - x}} + \dfrac{{2x - 2}}{{{x^2} - 3x + 2}} = 0\). Khẳng định nào sau đây là sai.
Cho phương trình: \(\dfrac{1}{{{x^2} + 3x + 2}} + \dfrac{1}{{{x^2} + 5x + 6}} + \dfrac{1}{{{x^2} + 7x + 12}} + \dfrac{1}{{{x^2} + 9x + 20}} = \dfrac{1}{3}\).
Tổng bình phương các nghiệm của phương trình trên là:
Xét phương trình \(\frac{{x + 3}}{x} = \frac{{x + 9}}{{x - 3}}.\left( 2 \right)\)
Hãy thực hiện các yêu cầu sau để giải phương trình (2):
a) Tìm điều kiện xác định của phương trình (2);
b) Quy đồng mẫu hai vế của phương trình (2), rồi khử mẫu;
c) Giải phương trình vừa tìm được;
d) Kết luận nghiệm của phương trình (2).
Giải phương trình \(\frac{1}{{x - 1}} - \frac{{4x}}{{{x^3} - 1}} = \frac{x}{{{x^2} + x + 1}}.\)
Giải các phương trình sau:
a) \(\frac{2}{{2x + 1}} + \frac{1}{{x + 1}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)
b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{{3x}}{{{x^3} + 1}}.\)
Hai người cùng làm chung một công việc thì xong trong 8 giờ. Hai người cùng làm được 4 giờ thì người thứ nhất bị điều đi làm công việc khác. Người thứ hai tiếp tục làm việc trong 12 giờ nữa thì xong công việc. Gọi x là thời gian người thứ nhất làm một mình xong công việc (đơn vị tính là giờ, \(x > 0\)).
a) Hãy biểu thị theo x:
- Khối lượng công việc mà người thứ nhất làm được trong 1 giờ;
- Khối lượng công việc mà người thứ hai làm được trong 1 giờ;
b) Hãy lập phương trình theo x và giải phương trình đó. Sau đó cho biết, nếu làm một mình thì mỗi người phải làm trong bao lâu mới xong công việc đó.
Để loại bỏ x% một loại tảo độc khỏi một hồ nước, người ta ước tính chi phí cần bỏ ra là
\(C\left( x \right) = \frac{{50x}}{{100 - x}}\) (triệu đồng), với \(0 \le x < 100.\)
Nếu bỏ ra 450 triệu đồng, người ta có thể lọai bỏ được bao nhiêu phần trăm loại tảo độc đó?
Giải các phương trình sau:
a) \(\frac{1}{{x + 2}} - \frac{2}{{{x^2} - 2x + 4}} = \frac{{x - 4}}{{{x^3} + 8}};\)
b) \(\frac{{2x}}{{x - 4}} + \frac{3}{{x + 4}} = \frac{{x - 12}}{{{x^2} - 16}}.\)
Giải các phương trình sau:
a) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}};\)
b) \(\frac{1}{{x - 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}.\)
Giải các phương trình sau:
a) \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\);
b) \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\).