Tính độ phức tạp của các hàm thời gian sau:
a) T(n) = 2n(n - 2) + 4.
b) T(n) = n3 + 5n - 3.
Vận dụng kiến thức trong bài và kiến thức thực tế của bản thân để trả lời câu hỏi.
a) T(n) = 2n(n - 2) + 4 = 2n2 - 4n + 4 = O(n2)
b) T(n) = n3 + 5n – 3 = O(n3)

Các bài tập cùng chuyên đề
Bài 1 :
Quan sát và ước lượng thời gian thực hiện các đoạn chương trình 1 và 2 trong Hình 24.2. Chương trình nào chạy nhanh hơn? Vì sao?

Bài 2 :
Quan sát và thực hiện đánh giá thời gian chạy của các chương trình 1 và 2 trong Hình 24.2. Từ đó biết và hiểu được cách đánh giá thời gian thực hiện chương trình.
Bài 3 :
Các lệnh và đoạn chương trình sau cần chạy trong bao nhiêu đơn vị thời gian?

Bài 4 :
Khẳng định "Trong mọi chương trình chỉ có đúng một phép toán tích cực" là đúng hay sai?
Bài 5 :
Cùng trao đổi và tìm hiểu cách phân loại thuật toán dựa trên độ phức tạp thời gian thuật toán.
Bài 6 :
Đọc, quan sát, thảo luận để biết một số quy tắc đơn giản tính độ phức tạp thời gian thuật toán.
Bài 7 :
Áp dụng các quy tắc trên để tính độ phức tạp của các hàm thời gian sau:
a) T(n) = n3 + nlogn + 2n + 1.
b) T(n) = 3n4 + 2n2logn + 10.
Bài 8 :
Xác định độ phức tạp thời gian cho chương trình sau:
n = 1000
s = 0
for i in range (n);
s = s + i*(i+1)
print (s)
Bài 9 :
Xác định độ phức tạp thời gian tính toán cho chương trình sau:
n = 1000
sum = 0
i = 1
while i <n;
i = i*2
sum = sum + 1
print (sum)
Bài 10 :
Xác định độ phức tạp thời gian của thuật toán sắp xếp chọn đã được học trong bài 21.
Bài 11 :
Em hãy thiết lập chương trình và tính thời gian chạy thực tế trên máy tính của các chương trình 1 và 2 ở Hình 24.2 với các giá trị n khác nhau từ đó thấy được ý nghĩa sự khác biệt độ phức tạp thời gian của hai chương trình này.