Cho bất phương trình \({x^2} - 4x + 3 > 0\left( 2 \right)\).

Quan sát parabol \(\left( P \right):{x^2} - 4x + 3\) ở Hình 26 và cho biết:
a) Bất phương trình (2) biểu diễn phần parabol (P) nằm ở phía nào của trục hoành.
b) Phần parabol (P) nằm phía trên trục hoành ứng với những giá trị nào của x.
- Nếu dấu bất phương trình dương thì bất phương trình biểu diễn phần (P) phía trên trục hoành và ngược lại.
a) Từ đồ thị ta thấy bất phương trình (2) biểu diễn phần parabol (P) nằm ở phía trên trục hoành.
b) Phần parabol (P) nằm phía trên trục hoành ứng với các giá trị của x thuộc \(\left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\)

Các bài tập cùng chuyên đề
Bài 1 :
Giải bất phương trình \( - 2{x^2} + 3x - 7 \ge 0.\)
\(S = 0.\)
\(S = \left\{ 0 \right\}.\)
\(S = \emptyset .\)
\(S = \mathbb{R}.\)
Bài 2 :
Bất phương trình nào sau đây có tập nghiệm là \(\mathbb{R}\)?
\( - 3{x^2} + x - 1 \ge 0.\)
\( - 3{x^2} + x - 1 > 0.\)
\( - 3{x^2} + x - 1 < 0.\)
\(3{x^2} + x - 1 \le 0.\)
Bài 3 :
Bất phương trình \({x^2} - 6\sqrt 2 x + 18 \ge 0\) có tập nghiệm là:
Bài 4 :
Tập nghiệm của bất phương trình \(2x\left( {2 - x} \right) \ge 2 - x\) là
\(\left[ {\dfrac{1}{2};2} \right]\)
\(\left[ {\dfrac{1}{2}; + \infty } \right)\)
\(\left[ {0; + \infty } \right)\)
\(\left( { - \infty ;\dfrac{1}{2}} \right] \cup \left[ {2; + \infty } \right)\)
Bài 5 :
Tập nghiệm của bất phương trình \({x^2} + 5x - 6 \le 0\) là:
\(\left[ { - {\rm{ 6}};{\rm{1}}} \right]\).
\(\left[ {{\rm{2}};{\rm{3}}} \right]\).
\(\left( { - \infty ;{\rm{6}}} \right] \cup \left[ {{\rm{1}}; + \infty } \right)\).
\(\left( { - \infty ;{\rm{2}}} \right] \cup \left[ {{\rm{3}}; + \infty } \right)\).
Bài 6 :
Tập nghiệm của bất phương trình \( - {x^2} + 5x + 6 > 0\) là:Bài 7 :
Giải mỗi bất phương trình bậc hai sau bằng cách sử dụng đồ thị:
a) \({x^2} + 2x + 2 > 0\)
b) \( - 3{x^2} + 2x - 1 > 0\)
Bài 8 :
Giải các bất phương trình bậc hai sau:
a) \(3{x^2} - 2x + 4 \le 0\)
b) \( - {x^2} + 6x - 9 \ge 0\)
Bài 9 :
a) Lập bảng xét dấu của tam thức bậc hai \(f\left( x \right) = {x^2} - x - 2\)
b) Giải bất phương trình \({x^2} - x - 2 > 0\)
Bài 10 :
Giải các bất phương trình bậc hai sau:
a) \(2{x^2} - 5x + 3 > 0\)
b) \( - {x^2} - 2x + 8 \le 0\)
c) \(4{x^2} - 12x + 9 < 0\)
d) \( - 3{x^2} + 7x - 4 \ge 0\)
Bài 11 :
Tìm m để phương trình \(2{x^2} + \left( {m + 1} \right)x + m - 8 = 0\) có nghiệm.
Bài 12 :
Giải các bất phương trình sau:
a) \(2{x^2} + 3x + 1 \ge 0\)
b) \( - 3{x^2} + x + 1 > 0\)
c) \(4{x^2} + 4x + 1 \ge 0\)
d) \( - 16{x^2} + 8x - 1 < 0\)
e) \(2{x^2} + x + 3 < 0\)
g) \( - 3{x^2} + 4x - 5 < 0\)
Bài 13 :
Tập nghiệm của bất phương trình \({x^2} - 3x + 2 < 0\) là:
\(\left( {-\infty ;{\rm{ }}1} \right){\rm{ }} \cup {\rm{ }}\left( {2;{\rm{ }} + \infty } \right)\)
\(\left( {-\infty ;{\rm{ }}1} \right)\)
\(\left( {2;{\rm{ }} + \infty } \right)\)
Bài 14 :
Tập nghiệm của bất phương trình \({x^2}-{\rm{ }}1{\rm{ }} > {\rm{ }}0\) là:
\(\left( {1; + \infty } \right)\)
\(\left( { - 1; + \infty } \right)\)
(– 1; 1);
\(\left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\)
Bài 15 :
Tập nghiệm của bất phương trình \( - {x^2} + 3x + 18 \ge 0\) là:
A. \(\left[ { - 3;6} \right]\)
B. \(\left( { - 3;6} \right)\)
C. \(x \in \left( { - \infty ; - 3} \right) \cup \left( {6; + \infty } \right)\)
D. \(x \in \left( { - \infty ; - 3} \right] \cup \left[ {6; + \infty } \right)\)
Bài 16 :
Giải các bất phương trình bậc hai sau:
a) \(3{x^2} - 8x + 5 > 0\)
b) \( - 2{x^2} - x + 3 \le 0\)
c) \(25{x^2} - 10x + 1 < 0\)
d) \( - 4{x^2} + 5x + 9 \ge 0\)
Bài 17 :
Tìm giao các tập nghiệm của hai bất phương trình \( - 3{x^2} + 7x + 10 \ge 0\) và \( - 2{x^2} - 9x + 11 > 0\).
Bài 18 :
Tìm \(m\) để phương trình \( - {x^2} + \left( {m + 2} \right)x + 2m - 10 = 0\) có nghiệm.
Bài 19 :
Tập nghiệm của bất phương trình \( - 5{x^2} + 6x + 11 \le 0\) là:
A. \(\left[ { - 1;\frac{{11}}{5}} \right]\)
B. \(\left( { - 1;\frac{{11}}{5}} \right)\)
C. \(x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{{11}}{5}; + \infty } \right)\)
D. \(x \in \left( { - \infty ; - 1} \right] \cup \left[ {\frac{{11}}{5}; + \infty } \right)\)
Bài 20 :
Giải các bất phương trình bậc hai sau:
a) \(4{x^2} - 9x + 5 \le 0\)
b) \( - 3{x^2} - x + 4 > 0\)
c) \(36{x^2} - 12x + 1 > 0\)
d) \( - 7{x^2} + 5x + 2 < 0\)
Bài 21 :
Giải các bất phương trình sau:
a) \( - 5{x^2} + x - 1 \le 0\)
b) \({x^2} - 8x + 16 \le 0\)
c) \({x^2} - x + 6 > 0\)
Bài 22 :
Giải các bất phương trình bậc hai:
a) \({x^2} - 1 \ge 0\)
b) \({x^2} - 2x - 1 < 0\)
c) \( - 3{x^2} + 12x + 1 \le 0\)
d) \(5{x^2} + x + 1 \ge 0\)
Bài 23 :
Bất phương trình \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) khi
A. \(m = - 1.\)
B. \(m = - 2.\)
C. \(m = 2.\)
D. \(m > 2.\)
Bài 24 :
Giải các bất phương trình sau:
a) \(2{x^2} - 3x + 1 > 0\)
b) \({x^2} + 5x + 4 < 0\)
c) \( - 3{x^2} + 12x - 12 \ge 0\)
d) \(2{x^2} + 2x + 1 < 0.\)
Bài 25 :
Hãy giải bất phương trình lập được trong hoạt động khám phá và tìm giá bán gạo sao cho cửa hàng có lãi.
Bài 26 :
Giải các bất phương trình bậc hai sau:
a) \(15{x^2} + 7x - 2 \le 0\)
b) \( - 2{x^2} + x - 3 < 0\)
Bài 27 :
Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trình bậc hai sau đây:


Bài 28 :
Giải các bất phương trình bậc hai sau:
a) \(2{x^2} - 15x + 28 \ge 0\)
b) \( - 2{x^2} + 19x + 255 > 0\)
c) \(12{x^2} < 12x - 8\)
d) \({x^2} + x - 1 \ge 5{x^2} - 3x\)
Bài 29 :
Giải các bất phương trình sau:
a) \(7{x^2} - 19x - 6 \ge 0\)
b) \( - 6{x^2} + 11x > 10\)
c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1\)
d) \({x^2} - 10x + 25 \le 0\)
Bài 30 :
Dựa vào đồ thị của hàm số bậc hai được cho, hãy giải các bất phương trình sau:
