Đề bài

Số điểm một cầu thủ bóng rổ ghi được trong 20 trận đấu được cho ở bảng sau:

a) Tìm tứ phân vị của dãy số liệu trên.

b) Tổng hợp lại dãy số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:

c) Hãy ước lượng tứ phân vị của số liệu từ bảng tần số ghép nhóm trên.

Phương pháp giải

a) Sắp xếp dãy số liệu theo thứ tự không giảm và tìm tứ phân vị.

b) Đếm và lập bảng.

c) Sử dụng công thức tính tứ phân vị.

Lời giải của GV Loigiaihay.com

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Tứ phân vị thứ nhất là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) = \frac{1}{2}\left( {11 + 11} \right) = 11\)

Tứ phân vị thứ hai là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right) = \frac{1}{2}\left( {14 + 14} \right) = 14\)

Tứ phân vị thứ ba là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) = \frac{1}{2}\left( {21 + 22} \right) = 21,5\)

b)

c) Do số trận đấu là số nguyên nên ta hiệu chỉnh như sau:

Tổng trận đấu là: \(n = 4 + 8 + 2 + 6 = 20\).

Gọi \({x_1};{x_2};...;{x_{20}}\) là điểm số của các trận đấu được xếp theo thứ tự không giảm.

Ta có:

\({x_1},...,{x_4} \in \begin{array}{*{20}{c}}{\left[ {5,5;10,5} \right)}\end{array};{x_5},...,{x_{12}} \in \begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array};{x_{13}},{x_{14}} \in \begin{array}{*{20}{c}}{\left[ {15,5;20,5} \right)}\end{array};{x_{15}},...,{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\)

• Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right)\)

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_{10}},{x_{11}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{2} - 4}}{8}.\left( {15,5 - 10,5} \right) = 14,25\)

• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right)\).

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_5},{x_6} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{4} - 4}}{8}.\left( {15,5 - 10,5} \right) = 11,125\)

• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right)\).

Ta có: \(n = 20;{n_j} = 6;C = 4 + 8 + 2 = 14;{u_j} = 20,5;{u_{j + 1}} = 25,5\)

Do \({x_{15}},{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 20,5 + \frac{{\frac{{3.20}}{4} - 14}}{6}.\left( {25,5 - 20,5} \right) \approx 21,3\)

Xem thêm : SGK Toán 11 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Lương tháng của một số nhân viên một văn phòng được ghi lại như sau (đơn vị: triệu đồng):

Tìm tứ phân vị của dãy số liệu trên.

Xem lời giải >>
Bài 2 :

Tìm tứ phân vị thứ nhất và tứ phân vị thứ ba cho mẫu số liệu ghép nhóm ở Luyện tập 2.

Xem lời giải >>
Bài 3 :

Tìm tứ phân vị thứ nhất và tứ phân vị thứ ba cho mẫu số liệu ghép nhóm ở Luyện tập 2.

Xem lời giải >>
Bài 4 :

Với mẫu số liệu ghép nhóm cho trong HĐ2, hãy cho biết tứ phân vị nhất \({Q_1}\) và tứ phân vị thứ ba \({Q_3}\) thuộc nhóm nào.

Cho mẫu số liệu ghép nhóm như Bảng 3.2

Xem lời giải >>
Bài 5 :

Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

Thời gian (phút)

[0;20)

[20; 40)

[40; 60)

[60; 80)

[80; 100)

Số học sinh

5

9

12

10

6

Nhóm chứa tứ phân vị thứ nhất là

A. \(\left[ {0;20} \right)\)                              C. \(\left[ {40;60} \right)\) 

B. \(\left[ {20;40} \right)\)                            D. \(\left[ {60;80} \right)\)

Xem lời giải >>
Bài 6 :

Một bảng xếp hạng đã tính điểm chuẩn hóa cho chi số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

Xác định điểm ngưỡng để đưa ra danh sách 25% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam.

Xem lời giải >>
Bài 7 :

Một phòng khám thống kê số bệnh nhân đến khám bệnh mỗi ngày trong tháng 4 năm 2022 ở bảng sau:

a) Hãy ước lượng các tử phân vị của mẫu số liệu ghép nhóm trên.

b) Quản lí phòng khám cho rằng có khoảng 25% số ngày khám có nhiều hơn 35 bệnh nhân đến khám. Nhận định trên có hợp lí không?

Xem lời giải >>
Bài 8 :

Một người thống kê lại thời gian thực hiện các cuộc gọi điện thoại của người đó trong 2 một tuần ở bảng sau:

Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Xem lời giải >>
Bài 9 :

Thời gian luyện tập trong một ngày (tính theo giờ) của một số vận động viên được ghi lại ở bảng sau:

Huấn luyện viên muốn xác định nhóm gồm 25% các vận động viên có số giờ luyện tập cao nhất. Hỏi huấn luyện viên nên chọn các vận động viên có thời gian luyện tập từ bao nhiêu giờ trở lên vào nhóm này?

Xem lời giải >>
Bài 10 :

Lương tháng của một số nhân viên một văn phòng được ghi lại như sau (đơn vị: triệu đồng): 

a) Tìm tứ phân vị của dãy số liệu trên.

b) Tổng hợp lại dãy số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:

c) Hãy ước lượng tứ phân vị của số liệu ở bảng tần số ghép nhóm trên.

Xem lời giải >>
Bài 11 :

Tứ phân vị thứ nhất của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau? 

A. 7.

B. 7,6.        

C. 8.

D. 8,6.

Xem lời giải >>
Bài 12 :

Tứ phân vị thứ ba của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?

A. 10.                     

B. 11.                     

C. 12.                      

D. 13.

Xem lời giải >>
Bài 13 :

Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:

Tìm a sao cho có 25% số cầu thủ tham gia trận đấu chạy ít nhất a(km).

Xem lời giải >>
Bài 14 :

Thống kê số lần đi học muộn trong học kì của các bạn trong lớp, Nam thu được kết quả sau:

Tính các tứ phân vị của mẫu số liệu ghép nhóm và cho biết ý nghĩa của các kết quả thu được.

Xem lời giải >>
Bài 15 :

Số a thỏa mãn có 25% giá trị trong mẫu số liệu nhỏ hơn a và 75% giá trị trong mẫu số liệu lớn hơn a

A. số trung bình                               

B. trung vị           

C. tứ phân vị thứ nhất                      

D. tứ phân vị thứ ba.

Xem lời giải >>
Bài 16 :

Số a thỏa mãn có 75% giá trị trong mẫu số liệu nhỏ hơn a và 25% giá trị trong mẫu số liệu lớn hơn a

A. số trung bình                               

B. trung vị           

C. tứ phân vị thứ nhất                      

D. tứ phân vị thứ ba.

Xem lời giải >>
Bài 17 :

Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là

A.\(\left[ {2;3,5} \right)\)                  

B.\(\left[ {3,5;\,\,5} \right)\)               

C. \(\left[ {5;\,\,6,5} \right)\)          

D. \(\left[ {6,5;\,\,8} \right)\).

Xem lời giải >>
Bài 18 :

Nhóm chứa tứ phân vị thứ ba của mẫu số liệu là

A.\(\left[ {2;3,5} \right)\)                  

B.\(\left[ {3,5;\,\,5} \right)\)               

C. \(\left[ {5;\,\,6,5} \right)\)          

D. \(\left[ {6,5;\,\,8} \right)\).

Xem lời giải >>
Bài 19 :

Một trang báo điện tử thống kê thời gian người sử dụng đọc thông tin trên trang trong mỗi lần truy cập ở bảng sau:

Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Xem lời giải >>
Bài 20 :

Người ta thống kê tốc độ của một số xe ô tô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau:

Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Xem lời giải >>
Bài 21 :

Trả lời các câu hỏi 6-10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là

A. 156,25.

B. 157,5.

C. 156,38.

D. 157,54.

Xem lời giải >>
Bài 22 :

Trả lời các câu hỏi 6-10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là

A. 160,52.

B. 161,52.

C. 161,14.

D. 162,25.

Xem lời giải >>
Bài 23 :

Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút) của một số học sinh thu được kết quả sau:

Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút (ảnh 1)

Hãy cho biết ngưỡng thời gian để xác định 25% học sinh hoàn thành bài tập với thời gian lâu nhất.

Xem lời giải >>
Bài 24 :

Tìm tứ phân vị của mẫu số liệu trong bảng 1.

Xem lời giải >>
Bài 25 :

Giáo viên chủ nhiệm chia thời gian sử dụng Internet trong một ngày của 40 học sinh thành năm nhóm (đơn vị: phút) và lập bảng số ghép nhóm bao gồm cả tần số tích lũy như Bảng 12.

 

a) Tìm trung vị \({M_e}\) của mẫu số liệu ghép nhóm đó. Trung vị \({M_e}\) còn gọi là tứ phân vị thứ 2 \({Q_2}\) của mẫu số liệu trên.

b) Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{40}}{4} = 10\) có đúng không?

Tìm đầu mút trái \(s\), độ dài \(h\), tần số \({n_2}\) của nhóm 2; tần số tích lũy \(c{f_1}\) của nhóm 1

Sau đó, hãy tính giá trị \({Q_1}\) theo công thức sau: \({Q_1} = s + \left( {\frac{{10 - c{f_1}}}{{{n_2}}}} \right).h\)

Giá trị nói trên được gọi là tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu đã cho

c) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\) có đúng không?

Xem lời giải >>
Bài 26 :

Để chuẩn bị cho đồ án tốt nghiệp, một sinh viên y khoa đã khảo sát huyết áp tối đa của một số bệnh nhân và lập được bảng tần số ghép nhóm sau:

Huyết áp

Tần số

[90;11)

6

[110;130)

20

[130;150)

35

[150;170)

45

[170;190)

30

[190;210)

16

Tìm tứ phân vị thứ ba của mẫu số liệu trên.

Xem lời giải >>
Bài 27 :

Người ta ghi lại tuổi thọ (năm) của 50 bình ắc quy của một hãng xe ô tô của cho kết quả như sau:

Tuổi thọ (năm)

[2;2,5)

[2,5;3)

[3;3,5)

[3,5;4)

[4;4,5)

[4,5;5)

Tần số

4

9

14

11

7

5

Tứ phân vị thứ nhất của mẫu số liệu trên gần với giá trị nào trong các giá trị sau đây?

Xem lời giải >>
Bài 28 :

Trong đại dịch Covid-19, một doanh nghiệp muốn hỗ trợ các gia đình thuộc nhóm \(25\% \) hộ gia đình có thu nhập thấp nhất ở một địa phương. Một mẫu số liệu ghép nhóm về thu nhập của các hộ gia đình ở địa phương này được cho trong bảng sau:

Dựa trên mẫu số liệu trên, hãy xác định hộ gia đình có thu nhập dưới bao nhiêu sẽ nhận được hỗ trợ của doanh nghiệp đó?

Xem lời giải >>