Đề bài

Diện tích hình phẳng giới hạn với đường cong \(y = 4 - \left| x \right|\)  và trục hoành $Ox$ là

  • A.

    $0$ .

  • B.

    $16$

  • C.

    $4$ .

  • D.

    $8$

Phương pháp giải

- Bước 1: Giải phương trình \(f\left( x \right) = g\left( x \right)\) tìm nghiệm.

- Bước 2: Phá dấu giá trị tuyệt đối của biểu thức \(\left| {f\left( x \right) - g\left( x \right)} \right|\)

- Bước 3: Tính diện tích hình phẳng theo công thức tích phân \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

Lời giải của GV Loigiaihay.com

Có $4 - \left| x \right| = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - 4\end{array} \right.$

Với \( - 4 \le x \le 4\) thì \(4 - \left| x \right| \ge 0\)

Diện tích hình cần tìm là:

$\begin{array}{l}S = \int_{ - 4}^4 {\left| {4 - \left| x \right|} \right|dx}  = \int_{ - 4}^4 {\left( {4 - \left| x \right|} \right)dx}  = \int_{ - 4}^0 {(4 + x)dx}  + \int_0^4 {(4 - x)dx} \\ = \left. {4x + \dfrac{{{x^2}}}{2}} \right|_{ - 4}^0 + \left. {4x - \dfrac{{{x^2}}}{2}} \right|_0^4 = 0 + 16 - 8 + 16 - 8 = 16\end{array}$

Đáp án : B

Chú ý

Một số em giải sai phương trình hoành độ giao điểm sẽ ra hai nghiệm \(\left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\) và tính tích phân $S = \int_0^4 {\left| {4 - \left| x \right|} \right|dx}  = 8$ dẫn đến chọn nhầm đáp án D là sai.

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề