Một hình lập phương có thể tích là \(8{a^3} + 36{a^2}b + 54a{b^2} + 27{b^3}\) với \(a > 0\), \(b > 0\). Tính độ dài cạnh của hình lập phương theo a,b.
Sử dụng hằng đẳng thức “Lập phương của một tổng” để tính độ dài cạnh của hình lập phương theo a,b.
Nếu cạnh hình lập phương là x thì thể tích của nó là \({x^3}\)
Hình lập phương có thể tích là: \(8{a^3} + 36{a^2}b + 54a{b^2} + 27{b^3} = {\left( {2a + 3b} \right)^3}\)
Vậy cạnh của nó là \(2a + 3b\).
Các bài tập cùng chuyên đề
Với hai số a,b bất kì, thực hiện phép tính
\(\left( {a + b} \right){\left( {a + b} \right)^2}\)
Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^3}\) và \({a^3} + 3{a^2}b + 3a{b^2} + {b^3}\).
1. Khai triển:
a) \({\left( {x + 3} \right)^3}\)
b) \({\left( {x + 2y} \right)^3}\)
2. Rút gọn biểu thức \({\left( {2x + y} \right)^3} - 8{x^3} - {y^3}\)
Viết biểu thức \({x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\) dưới dạng lập phương của một tổng.
Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\).
Áp dụng, tính \({a^3} + {b^3}\) biết \(a + b = 4\) và \(ab = 3\).
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức \(S = 200{\left( {1 + x} \right)^3}\) (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất là x=5,5%.
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
Cho \(a\) và \(b\)là hai số thực bất kì:
Tính:
a)\({\left( {2a + 3} \right)^3}\)
b)\({\left( {u + 4v} \right)^3}\)
a) Viết biểu thức \({x^3} + 3{x^2} + 3x + 1\) dưới dạng lập phương của một tổng.
b) Sử dụng kết quả của câu a, hãy tính giá trị của biểu thức sau tại \(x = 19:\)
\({x^3} + 3{x^2} + 3x + 1.\)
Biết số tự nhiên a chia 6 dư 5. Chứng minh \({a^3}\) chia 6 dư 5.
Khai triển \({\left( {2x + 1} \right)^3}\) được biểu thức:
A. \(8{x^3}\; + 12{x^2}\; + 6x + 1\).
B. \(8{x^3}\; + 6{x^2}\; + 12x + 1\).
C. \(8{x^3}\;-12{x^2}\; + 6x-1\).
D. \(8{x^3}\;-6{x^2}\; + 12x-1\).
Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right).\)
Áp dụng, tính \({a^3} + {b^3}\) nếu \(a + b = 4\) và \(ab = 3\).
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức
\(S\; = \;200.{\left( {1 + x} \right)^3}\) (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất là \(x = 5,5\% \).
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
Để biểu thức \({x^3} + 6{x^2} + 12x + m\) là lập phương của một tổng thì giá trị của m là:
Tính giá trị biểu thức \(A = 8{x^3} + 12{x^2} + 6x + 1\) tại \(x = 9,5\) .
Cho ba số thực \(a, b, c\) khác 2 và thỏa mãn \(a + b + c = 6\). Tính giá trị của biểu thức: \(M = \frac{{{{\left( {a - 2} \right)}^2}}}{{\left( {b - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {b - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {c - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {b - 2} \right)}}\).
Các đơn thức điền vào ô trống trong khai triển \({\left( {a + ...} \right)^3} = {a^2} + 9{a^2}b + 27a{b^2} + ...\) lần lượt là