Đề bài

Một người dùng các thanh kim loại để thiết kế một khung ảnh gồm hai hình vuông lồng vào nhau như Hình 1.10, trong đó ảnh được gắn vào hình vuông nhỏ. Biết rằng tổng chiều dài của các thanh kim loại để làm khung là \(168\,\,cm\) và diện tích phần không gắn ảnh( phần tô màu) là \(252\,\,c{m^2}\). Tính diện tích của phần được gắn ảnh. 

Phương pháp giải

Gọi độ dài hai cạnh hình vuông lần lượt là\(a\) và \(b\)như hình vẽ

Viết biểu thức biểu diễn tổng chiều dài của các thanh kim loại.

Viết biểu thức biểu diễn diện tích phần không gắn ảnh.

Áp dụng các kiến thức đã học để tính diện tích phần tô màu.

Lời giải của GV Loigiaihay.com

Gọi độ dài hai cạnh hình vuông lần lượt là \(a\) và \(b\)như hình vẽ \(\left( {cm,a > b > 0} \right)\)

Theo đề bài tổng độ dài của các thanh kim loại là \(168cm\)nên ta có: \(4a + 4b = 168 \Rightarrow a + b = 42\)(1)

Diện tích phần không gắn ảnh là hiệu diện tích của hình vuông lớn và hình vuông nhỏ và bằng \(252c{m^2}\)nên ta có: \({a^2} - {b^2} = 252 \Rightarrow \left( {a + b} \right)\left( {a - b} \right) = 252 \Rightarrow 42.\left( {a - b} \right) = 252 \Rightarrow a - b = 6\)

\( \Rightarrow a = 6 + b\)Thay vào (1) ta có: \(6 + b + b = 42 \Rightarrow 2b = 36 \Rightarrow b = 18 \Rightarrow a = 24\)

Diện tích phần không gắn ảnh là: \(4.\frac{1}{2}ab = 2ab\)\(c{m^2}\)

Có \(2ab = 252\) nên \(ab = 126 \Rightarrow a = \frac{{126}}{b}\)

Thay \(a = \frac{{126}}{b}\)vào (1) ta được \(\begin{array}{l}4.\frac{{126}}{b} + 4b + {\left( {\frac{{126}}{b}} \right)^2} - {b^2} = 168\\ \Rightarrow 504 + 4{b^2} + {126^2} - {b^3}\end{array}\)

Diện tích của phần được gắn ảnh là: 

Xem thêm : SGK Toán 8 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Quan sát Hình 2.1

 

a)      Tính diện tích của phần hình màu xanh ở Hình 2.1a.

b)      Tính diện tích hình chữ nhật màu xanh ở Hình 2.1b.

c)      Có nhận xét gì về diện tích của hai hình ở câu a và câu b?

Xem lời giải >>
Bài 2 :

Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right)\left( {a - b} \right)\).

Từ đó rút ra liên hệ giữa \({a^2} - {b^2}\) và \(\left( {a + b} \right)\left( {a - b} \right)\).

Xem lời giải >>
Bài 3 :

a)      Tính nhanh \({99^2} - 1\)

b)      Viết \({x^2} - 9\) dưới dạng tích.

Xem lời giải >>
Bài 4 :

Ở bài toán mở đầu, em hãy giải thích xem bạn đó tính nhanh như thế nào.

Xem lời giải >>
Bài 5 :

Chứng minh rằng với mọi số tự nhiên n, ta có:

\({\left( {n + 2} \right)^2} - {n^2}\) chia hết cho 4.

Xem lời giải >>
Bài 6 :
  1. Viết đa thức \({x^3} - 8\) dưới dạng tích.
  2. Rút gọn biểu thức \(\left( {3x - 2y} \right)\left( {9{x^2} + 6xy + 4{y^2}} \right) + 8{y^3}\)
Xem lời giải >>
Bài 7 :

Khẳng định nào sau đây là đúng?

A. \(\left( {A - B} \right)\left( {A + B} \right) = {A^2} + 2AB + {B^2}\)

B. \(\left( {A - B} \right)\left( {A + B} \right) = {A^2} - 2AB + {B^2}\)

C. \(\left( {A - B} \right)\left( {A + B} \right) = {A^2} + {B^2}\)

D. \(\left( {A - B} \right)\left( {A + B} \right) = {A^2} - {B^2}\)

Xem lời giải >>
Bài 8 :

a) Từ Hình 3a, người ta cắt ghép tạo thành Hình 3b. Viết hai biểu thức khác nhau, mỗi biểu thức biểu thị diện tích (phần tô màu) của một trong hai hình bên.

 

b) Thực hiện phép nhân và rút gọn đa thức, biến đổi biểu thức \(\left( {a + b} \right)\left( {a - b} \right)\) thành một đa thức thu gọn. Từ đó, có kết luận gì về diện tích của hai hình bên?

Xem lời giải >>
Bài 9 :

Thực hiện các phép nhân:

a) \(\left( {4 - x} \right)\left( {4 + x} \right)\)                                   

b) \(\left( {2y + 7z} \right)\left( {2y - 7z} \right)\)                      

c) \(\left( {x + 2{y^2}} \right)\left( {x - 2{y^2}} \right)\)

Xem lời giải >>
Bài 10 :

Tính nhanh:

a) \(82.78\)                                          

b) \(87.93\)                             

c) \({125^2} - {25^2}\)

Xem lời giải >>
Bài 11 :

Giải đáp câu hỏi ở đầu bài (trang 18)

Xem lời giải >>
Bài 12 :

Viết các biểu thức sau thành đa thức:

a) \(\left( {3x - 5} \right)\left( {3x + 5} \right)\)                               

b) \(\left( {x - 2y} \right)\left( {x + 2y} \right)\)                      

c) \(\left( { - x - \dfrac{1}{2}y} \right)\left( { - x + \dfrac{1}{2}y} \right)\)

Xem lời giải >>
Bài 13 :

Viết các biểu thức sau thành đa thức:

a) \(\left( {a - 1} \right)\left( {a + 1} \right)\left( {{a^2} + 1} \right)\)                    b) \({\left( {xy + 1} \right)^2} - {\left( {xy - 1} \right)^2}\)

Xem lời giải >>
Bài 14 :

Với a, b là hai số thực bất kì, thực hiện phép tính: \(\left( {a - b} \right)\left( {a + b} \right)\)

Xem lời giải >>
Bài 15 :

Viết mỗi biểu thức sau dưới dạng tích:

a) \(9{{\rm{x}}^2} - 16\)

b) \(25 - 16{y^2}\)

Xem lời giải >>
Bài 16 :

Tính:

\(a)\left( {a - 3b} \right)\left( {a + 3b} \right)\)

\(b)\left( {2{\rm{x}} + 5} \right)\left( {2{\rm{x}} - 5} \right)\)

\(c)\left( {4y - 1} \right)\left( {4y + 1} \right)\)

Xem lời giải >>
Bài 17 :

Tính nhanh: \(48.52\).

Xem lời giải >>
Bài 18 :

Cho \(a\) và \(b\) là hai số thực bất kì.

1. \(\left( {a + b} \right)\left( {a - b} \right)\).

2. Hãy cho biết: \({a^2} - {b^2} = ?\)

Xem lời giải >>
Bài 19 :

Tính:

a) \(\left( {2a + 1} \right)\left( {2a - 1} \right)\)

b)\(\left( {2x + 5y} \right)\left( {2x - 5y} \right)\)

Xem lời giải >>
Bài 20 :

Tính nhanh:

a) \(49.51\)

b) \({32^2} - 128 + 4\)

Xem lời giải >>
Bài 21 :

a) Tính giá trị của \({u^2} - {v^2},\) biết rằng \(u - v = 3\) và \(u + v = 7.\)

b) Tính giá trị của \(u - v,\) biết rằng \({u^2} - {v^2} = 20\) và \(u + v = 5.\)

Xem lời giải >>
Bài 22 :

Chứng minh rằng \({9^n} - 1\) chia hết cho \({3^n} - 1\) với mọi số nguyên dương \(n\)

Xem lời giải >>
Bài 23 :

Tính nhanh:

a) \({202^2}\)

b) \(299.301\)

c) \({95^3} + {15.95^2} + 3.95.25 + {5^3}\)

d) \(9\left( {{{10}^2} + 10 + 1} \right) + 100\left( {{{98}^2} + 392 + {2^2}} \right)\)

Xem lời giải >>
Bài 24 :

Không tính giá trị của biểu thức, hãy so sánh:

a) \(M = 2021.2023\) và \(N = {2022^2}\)

b) \(P = 3\left( {{2^2} + 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right) + 2\) và \(Q = {\left( {{2^2}} \right)^8}\)

Xem lời giải >>
Bài 25 :

Viết các biểu thức sau thành đa thức:

a) \(\left( {1 - 4x} \right)\left( {1 + 4x} \right)\);

b) \(\left( { - 2x - 5y} \right)\left( {2x - 5y} \right)\);

c) \(\left( {{x^3} - 3x} \right)\left( {3x + {x^3}} \right)\);

d) \(\left( {1 + x + {x^2}} \right)\left( {1 + x - {x^2}} \right)\).

Xem lời giải >>
Bài 26 :

Chứng minh rằng, với mọi số nguyên n

a) \((2n + 1)^2 − (2n − 1)^2\) chia hết cho 8;

b) \((8n + 4)^2 − (2n + 1)^2\) chia hết cho 15.

Xem lời giải >>
Bài 27 :

Viết các biểu thức sau thành đa thức:

a) \(\left( {{x^2} + 4{y^2}} \right)\left( {x + 2y} \right)\left( {x - 2y} \right)\);

b) \(\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)\).

Xem lời giải >>
Bài 28 :

Đa thức \(4{x^2}\;-1\) được viết dưới dạng tích của hai đa thức

A. \(2x-1\) và \(2x + 1\).

B. \(x-1\) và \(4x + 1\).

C. \(2x-1\) và \(2x-1\).

D. \(x + 1\) và \(4x-1\).

Xem lời giải >>
Bài 29 :

Khẳng định nào sau đây là đúng?

A. \(\left( {A-B} \right)\left( {A-B} \right) = {A^2}\; + 2AB + {B^2}\).

B. \(\left( {A + B} \right)\left( {A + B} \right) = {A^2}\;-2AB + {B^2}\).

C. \(\left( {A + B} \right)\left( {A-B} \right) = {A^2}\; + {B^2}\).

D. \(\left( {A + B} \right)\left( {A-B} \right) = {A^2}\;-{B^2}\).

Xem lời giải >>
Bài 30 :

Tính nhanh

a) \({101^2}\;-1\).

b) \({2003^2}\;-9\).

Xem lời giải >>