Đề bài

Làm thế nào để nhân, chia các phân thức đại số?

Phương pháp giải

Áp dụng như các quy tắc nhân chia các phân số.

Lời giải của GV Loigiaihay.com

Để nhân, chia được các phân thức đại số ta thực hiện như nhân chia các phân số.

Xem thêm : SGK Toán 8 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Tính:

a) \(\dfrac{{4{x^2} + 2}}{{x - 2}} \cdot \dfrac{{3x + 2}}{{x - 4}} \cdot \dfrac{{4 - 2x}}{{2{x^2} + 1}}\) 

b) \(\dfrac{{x + 3}}{x} \cdot \dfrac{{x + 2}}{{{x^2} + 6x + 9}}:\dfrac{{{x^2} - 4}}{{{x^2} + 3x}}\)

Xem lời giải >>
Bài 2 :

Thực hiện các phép tính sau:

a)     \(\frac{{15{a^2}}}{{8bc}}.\frac{{4c}}{{5a{b^2}}}\)

b)    \(\frac{{14{x^3}}}{{5y{z^3}}}:\frac{{7x}}{{15y{z^2}}}\)

c)     \(\frac{{6t + 12}}{{10 - 5t}}.\frac{{t - 2}}{{t + 2}}\)

d)    \(\frac{{m - 5}}{{{m^2} + 1}}:\left( {3m - 15} \right)\)

Xem lời giải >>
Bài 3 :

Thực hiện các phép tính sau:

a)     \(\frac{{5a}}{{9b}}.\frac{{2a{c^2}}}{b}:\frac{{{c^3}}}{{8{b^3}}}\)

b)    \(\frac{{{x^2} - 2xy}}{{x - y}}.\frac{{y - x}}{{3x - {x^2}}}:\frac{1}{{3 - x}}\)

c)     \(\left( {\frac{{3x}}{{x + 1}} + 1} \right):\left( {1 - \frac{{15{x^2}}}{{1 - {x^2}}}} \right)\)

d)    \(\left( {{m^2} - 1} \right).\left( {\frac{1}{{m + 1}} - \frac{1}{{m - 1}} + 1} \right)\)

Xem lời giải >>
Bài 4 :

Thực hiện các phép tính sau:

a)     \(\frac{{{y^2} - 4y + 4}}{{3 - 9y}}.\frac{{3y - 1}}{{3{y^2} - 12}}\)

b)    \(\frac{{{c^2} - {d^2}}}{{cd}}:\frac{1}{{cd + {d^2}}}\)

Xem lời giải >>
Bài 5 :

Rút gọn các biểu thức sau:

a)     \(\left( {b - \frac{{{a^2} + {b^2}}}{{a + b}}} \right).\left( {\frac{{2b}}{a} - \frac{{4b}}{{a - b}}} \right)\)

b)    \(\left( {\frac{{{x^2}}}{{{y^2}}} + \frac{y}{x}} \right):\left( {\frac{x}{{{y^2}}} - \frac{1}{y} + \frac{1}{x}} \right)\)

Xem lời giải >>
Bài 6 :

Thu gọn các biểu thức sau:

a) \(\frac{{16 - {a^2}}}{{{a^2} + 8a + 16}}:\frac{{a - 4}}{{2a + 4}}.\frac{{a + 4}}{{a + 2}}\);

b) \(\frac{{{a^2} - ab + {b^2}}}{{{b^2} - {a^2}}}.\frac{{a + b}}{{{a^3} + {b^3}}}:\frac{{a + b}}{{a - b}}\);

c) \(\left( {\frac{{2a}}{{a - 2}} - \frac{a}{{a + 2}}} \right).\frac{{{a^2} - 4}}{a}\);

d) \(\left( {\frac{1}{{{a^2}}} - \frac{1}{{ab}}} \right).\frac{{a{b^2}}}{{a - b}}\).

Xem lời giải >>
Bài 7 :

Tính:

a) \(\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\);

b) \(\left( {\frac{x}{{x + 1}} + 1} \right):\left( {1 - \frac{{3{x^2}}}{{1 - {x^2}}}} \right)\).

Xem lời giải >>
Bài 8 :

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\)

b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\)

c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\)

Xem lời giải >>
Bài 9 :

Trên một mảnh đất có dạng hình chữ nhật với chiều dài là \(x\left( m \right)\), chiều rộng là \(y\left( m \right)\) với \(x > y > 4\), bác An dự định làm một vườn hoa hình chữ nhật và bớt ra một phần đường đi rộng 2 m như Hình 3. Viết phân thức biểu thị theo \(x;y\).

a) Tỉ số diện tích của mảnh đất và vườn hoa.

b) Tỉ số chu vi mảnh đất và vườn hoa.

 

Xem lời giải >>
Bài 10 :

Tìm hai phân thức P, Q thoản mãn:

\(a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\)

\(b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\)

Xem lời giải >>
Bài 11 :

Cho hai phân thức \(P = \frac{{{x^2} + 6{\rm{x}} + 9}}{{{x^2} + 3{\rm{x}}}}\) và \(Q = \frac{{{x^2} + 3{\rm{x}}}}{{{x^2} - 9}}\)

a) Rút gọn P và Q

b) Sử dụng kết quả câu a, Tính P.Q và P:Q

Xem lời giải >>
Bài 12 :

Thực hiện phép tính:

\(\begin{array}{l}a)\frac{{4{\rm{x}} - 6}}{{5{{\rm{x}}^2} - x}}.\frac{{25{{\rm{x}}^2} - 10{\rm{x}} + 1}}{{27 + 8{{\rm{x}}^3}}}\\b)\frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}:\frac{{{{\left( {x + 5} \right)}^3}}}{{{x^2} - 9}}\end{array}\)

Xem lời giải >>
Bài 13 :

Rút gọn biểu thức \(P = \frac{x}{{{z^2}}}.\frac{{xz}}{{{y^3}}}:\frac{{{x^3}}}{{yz}}\)

Xem lời giải >>
Bài 14 :

Tìm hai phân thức P và Q thoản mãn:

a) \(P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\);

b) \(Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\).

Xem lời giải >>
Bài 15 :

Cho hai phân thức \(P = \frac{{{x^2} + 6{\rm{x}} + 9}}{{{x^2} + 3{\rm{x}}}}\) và \(Q = \frac{{{x^2} + 3{\rm{x}}}}{{{x^2} - 9}}\)

a) Rút gọn P và Q

b) Sử dụng kết quả câu a, Tính P.Q và P:Q

Xem lời giải >>
Bài 16 :

Hãy thực hiện các phép tính đã chỉ ra.

a) \(\frac{{4{\rm{x}} - 6}}{{5{{\rm{x}}^2} - x}}.\frac{{25{{\rm{x}}^2} - 10{\rm{x}} + 1}}{{27 + 8{{\rm{x}}^3}}}\);

b) \(\frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}:\frac{{{{\left( {x + 5} \right)}^3}}}{{{x^2} - 9}}\).

Xem lời giải >>