Đề bài

Cho hình chữ nhật \(ABCD\). Giải thích tại sao \(ABCD\) là hình vuông trong mỗi trường hợp sau:

Trường hợp 1: \(AB = BC\)

Trường hợp 2: \(AC\) vuông góc với \(BD\)

Trường hợp 3: \(AC\) là đường phân giác của góc \(BAD\)

Phương pháp giải

Áp dụng tính chất của hình chữ nhật, định nghĩa hình vuông

Lời giải của GV Loigiaihay.com

\(ABCD\) là hình chữ nhật (gt)

Suy ra \(AB = CD\); \(AD = BC\); \(AB\) // \(CD\); \(AD\) // \(BC\) (3)

\(\widehat A = \widehat B = \widehat C = \widehat D = 90^\circ \) (1)

TH1:


Nếu \(AB = BC\) (gt) thì  \(AB = BC = CD = DA\) (2)

Từ (1), (2) suy ra \(ABCD\) là hình vuông

TH2:


Nếu \(AC\) vuông góc với \(BD\)

\(ABCD\) cũng là hình bình hành

Suy ra \(ABCD\) là hình thoi

Suy ra \(AB = BC = CD = DA\) (4)

Từ (1) và (4) suy ra \(ABCD\) là hình vuông

TH3:


\(AC\) là phân giác của góc \(BAD\)

\(ABCD\) là hình bình hành

Suy ra \(ABCD\) là hình thoi

Suy ra \(AB = BC = CD = DA\) (5)

Từ (1) và (5) suy ra \(ABCD\) là hình vuông

Xem thêm : SGK Toán 8 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N.

Chứng minh DM + BN = MN.

Xem lời giải >>
Bài 2 :

a) Mỗi hình vuông có là một hình chữ nhật hay không?

b) Mỗi hình vuông có là một hình thoi hay không?

Xem lời giải >>
Bài 3 :

Cho hình vuông ABCD. Tính số đo các góc CAB, DAC.

Xem lời giải >>
Bài 4 :

Từ tính chất của hình chữ nhật và hình thoi, em hãy nêu tính chất của đường chéo hình vuông.

Xem lời giải >>
Bài 5 :

Tính độ dài cạnh của hình vuông có đường chéo bằng \(5\,cm.\)

Xem lời giải >>
Bài 6 :

Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N. Chứng minh DM + BN = MN.

Xem lời giải >>
Bài 7 :

Cho hình vuông ABCD. Với điểm M nằm giữa C và D, kẻ tia phân giác của góc DAM; nó cắt CD ở N. Đường thẳng qua N vuông góc với AM cắt BC ở P. Tính số đo của góc NAP.

Xem lời giải >>
Bài 8 :

Cho hình vuông ABCD với tâm O và có cạnh bằng 2cm. Hai tia Ox, Oy tạo thành góc vuông. Tính diện tích của phần hình vuông nằm bên trong góc xOy.

Xem lời giải >>
Bài 9 :

Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26). Chứng minh:

a)     \(\Delta AHF = \Delta ADC\)

b)    \(AC \bot HF\).

 

Xem lời giải >>