Đề bài

Cho tam giác ABC vuông tại A có \(AC = AB\sqrt 3 \). Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

a) \(\widehat B = 60^\circ ,\widehat C = 30^\circ \).

Đúng
Sai

b) \(\sin B = \cos B = \frac{{\sqrt 3 }}{2}\).

Đúng
Sai

c) \(\tan B = \cot C = \frac{{\sqrt 3 }}{3}\).

Đúng
Sai
Đáp án

a) \(\widehat B = 60^\circ ,\widehat C = 30^\circ \).

Đúng
Sai

b) \(\sin B = \cos B = \frac{{\sqrt 3 }}{2}\).

Đúng
Sai

c) \(\tan B = \cot C = \frac{{\sqrt 3 }}{3}\).

Đúng
Sai
Phương pháp giải

Dựa vào các tỉ số lượng giác đã học.

Theo bài ra ta có: \(AC = AB\sqrt 3 \) nên \(\frac{{AC}}{{AB}} = \sqrt 3 \)

Mà \(\tan B = \frac{{AC}}{{AB}} = \sqrt 3 \) nên \(\hat B = 60^\circ \)\( \Rightarrow \hat C = 90^\circ  - \hat B = 30^\circ \)

Với \(\hat B = 60^\circ ;\hat C = 30^\circ \) ta có:

\(\begin{array}{l}\sin B = \cos C = \frac{{\sqrt 3 }}{2}\\\cos B = \sin C = \frac{1}{2}\\\tan B = \cot C = \sqrt 3 \\\cot B = \tan C = \frac{{\sqrt 3 }}{3}\end{array}\)

Đáp án a) Đúng; b) Sai; c) Sai

Các bài tập cùng chuyên đề

Bài 1 :

Một khúc sông rộng khoảng $250m$. Một chiếc thuyền muốn qua sông theo phương ngang nhưng bị dòng nước đẩy theo phương xiên, nên phải đi khoảng $320m$  mới sang được bờ bên kia. Hỏi dòng nước đã đẩy thuyền lệch đi một góc bao nhiêu độ?

Xem lời giải >>
Bài 2 :

Một khúc sông rộng khoảng \(100m\) . Một chiếc thuyền muốn qua sông theo phương ngang nhưng bị dòng nước đẩy theo phương xiên, nên phải đi khoảng \(180m\)  mới sang được bờ bên kia. Hỏi dòng nước đã đẩy thuyền lệch đi một góc bao nhiêu độ? (làm tròn đến độ)

Xem lời giải >>
Bài 3 :

Để tính khoảng cách giữa hai địa điểm A, B không đo trực tiếp được, chẳng hạn A và B là hai địa điểm ở hai bên sông, người ta lấy điểm C về phía bờ sông có chứa B sao cho tam giác ABC vuông tại B. Ở bên bờ sông chứa B, người ta đo được \(\widehat {ACB} = \alpha \) và \(BC = a\) (H.4.10) . Với các dữ liệu đó, đã tính được khoảng cách AB chưa? Nếu được, hãy tính AB, biết \(\alpha  = {55^0},a = 70\) m.

 

Xem lời giải >>
Bài 4 :

Trở lại bài toán ở tình huống mở đầu: Trong một toàn chung cư, biết đoạn dốc vào sảnh toàn nhà dài 4 m, độ cao của đỉnh dốc bằng 0,4 m.

a) Hãy tính góc dốc.

b) Hỏi góc đó có đúng tiêu chuẩn của dốc cho người đi xe lăn không?

Tình huống mở đầu:

Ta có thể xác định “góc dốc” \(\alpha \) của một đoạn đường dốc khi biết độ dài của dốc là a và độ cao của đỉnh dốc so với đường nằm ngang là h không? (H.4.1)

(Trong các tòa chung cư, người ta thường thiết kế đoạn dốc cho người đi xe lăn với góc dốc bé hơn \({6^0}\)) .

Xem lời giải >>
Bài 5 :

Xét các tam giác vuông có một góc nhọn bằng hai lần góc nhọn còn lại. Hỏi các tam giác đó có đồng dạng với nhau không? Tính sin và cos của góc nhọn lớn hơn.

Xem lời giải >>
Bài 6 :

a) Sử dụng máy tính cầm tay, tính tỉ số lượng giác của các góc sau (kết quả làm tròn đến hàng phần nghìn):

22o

52o

15o20’

52o18’

b) Tìm các góc nhọn x, y, z, t trong mỗi trường hợp sau (kết quả làm tròn đến hàng phần trăm hoặc đến phút):

sin x = 0,723

cos y = 0,828

tan z = 3,77

cot t = 1,54.

Xem lời giải >>
Bài 7 :

a) Vẽ một tam giác vuông có góc bằng 40o . Đo độ dài các cạnh rồi dùng các số đo để tính các tỉ số lượng giác của góc 40o . Kiểm tra lại các kết quả vừa tính bằng máy tính cầm tay.

b) Vẽ một tam giác vuông có ba cạnh bằng 3 cm, 4 cm, 5 cm. Tính các tỉ số lượng giác của mỗi góc nhọn. Dùng thức đo góc để đo các góc nhọn. Kiểm tra lại các kết quả bằng máy tính cầm tay.

Xem lời giải >>
Bài 8 :

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác của góc B trong mỗi trường hợp sau:

a) BC = 5 cm; AB = 3 cm.

b) BC = 13cm; AC = 12 cm

c) BC = \(5\sqrt 2 \) cm; AB = 5 cm

d) AB = \(a\sqrt 3 \); AC = a

Xem lời giải >>
Bài 9 :

Tia nắng chiếu qua nóc của một tòa nhà hợp với mặt đất một góc\(\alpha \). Cho biết tòa nhà cao 21m và bóng của nó trên mặt đất dài 15m (Hình 10). Tính góc\(\alpha \) (kết quả làm tròn đến độ).

Xem lời giải >>
Bài 10 :

Một cái thang dài 12m được đặt dựa vào một bức tường sao cho chân thang cách tường 7m (Hình 11). Tính góc \(\alpha \) tạo bởi thang và tường.

Xem lời giải >>
Bài 11 :

Giá trị của biểu thức \(B = tan{20^o}.\tan {30^o}.\tan {40^o}.\tan {50^o}.\tan {60^o}.tan{70^o}\) là

A. 2

B. 1

C. 3

D. 4

Xem lời giải >>
Bài 12 :

Cho tam giác ABC vuông tại A có AB = 18 cm, AC = 24 cm. Tính các tỉ số lượng giác của góc B, từ đó suy ra các tỉ số lượng giác của góc C.

Xem lời giải >>
Bài 13 :

Cho góc nhọn \(\alpha \) biết sin\(\alpha \) = 0,8. Tính cos\(\alpha \), tan \(\alpha \) và cot\(\alpha \).

Xem lời giải >>
Bài 14 :

Cho góc nhọn \(\alpha \). Biết rằng, tam giác \(ABC\) vuông tại \(A\) sao cho \(\widehat B = \alpha \).

a) Biểu diễn các tỉ số lượng giác của góc nhọn \(\alpha \) theo \(AB,BC,CA\).

b) Chứng minh: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\); \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}\); \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}\); \(\tan \alpha .\cot \alpha  = 1\).

Từ đó, tính giá trị biểu thức: \(S = {\sin ^2}35^\circ  + {\cos ^2}35^\circ \); \(T = \tan 61^\circ .\cot 61^\circ \).

Xem lời giải >>
Bài 15 :

Hình 11 mô tả tia nắng mặt trời dọc theo \(AB\) tạo với phương nằm ngang trên mặt đất một góc \(\alpha  = \widehat {ABH}\). Sử dụng máy tính cầm tay, tính số đo góc \(\alpha \) (làm tròn kết quả đến hàng đơn vị của độ), biết \(AH = 2m,BH = 5m\).

Xem lời giải >>
Bài 16 :

Tính tỉ số lượng giác của các góc \(\alpha \) và \(\beta \) trong mỗi trường hợp ở Hình 4.13.

Xem lời giải >>
Bài 17 :

Cho hình chữ nhật ABCD có \(\widehat {ABD} = 2\widehat {CBD}\). Hãy tính tỉ số chiều dài và chiều rộng của hình chữ nhật ABCD.

Xem lời giải >>
Bài 18 :

Khi một vật được ném xiên một góc \(\alpha \) so với mặt đất và tốc độ ném ban đầu là \({v_o}\left( {m/s} \right)\) (Hình 4.14), độ cao lớn nhất H(m) mà vật có thể đạt đến được cho bởi công thức: \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) (nguồn: https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/3%3A_Two-Dimensional_Kinematics/3.3%3A_Projectile_Motion). Tính độ cao lớn nhất của vật nếu tốc độ ném ban đầu là 12m/s và góc ném là:

a) \({45^o}\);

b) \({30^o}\);

c) \({50^o}\).

Làm tròn kết quả đến hàng phần mười mét.

Xem lời giải >>
Bài 19 :

a) Chứng minh rằng với mọi góc nhọn \(\alpha  < {45^o}\), ta có

\(\sin \left( {{{45}^o} - \alpha } \right) = \cos \left( {{{45}^o} + \alpha } \right),\cos \left( {{{45}^o} - \alpha } \right) = \sin \left( {{{45}^o} + \alpha } \right)\)

b) Không dùng MTCT, tính

\(\sin {25^o} + \sin {35^o} + \sin {45^o} - \cos {45^o} - \cos {55^o} - \cos {65^o}\)

Xem lời giải >>
Bài 20 :

Với \(\alpha  < \beta  < {90^o}\), hãy chứng minh rằng:

a) \(\cos \alpha  > \cos \beta \) (HD. Sử dụng Ví dụ 5 và bài 4,15);

b) \(\sin \alpha  < \sin \beta \) (HD. Sử dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)).

Xem lời giải >>
Bài 21 :

Chọn đúng hoặc sai cho mỗi ý a), b), c), d).

Cho tam giác OAB vuông tại O có OA = 8 cm, OB = 15 cm.

a) \(\tan A = \frac{{15}}{8}\)

b) \(\sin B = \frac{{15}}{{17}}\)

c) \(\sin A = \frac{8}{{17}}\)

d)  cot A = tan B

Xem lời giải >>
Bài 22 :

Cho tam giác ABC có \(\widehat A = {90^o}\)  và \(\widehat C = {30^o}\) như trên Hình 4.3. Tìm khẳng định sai trong các khẳng định sau?

 

A. \(\sin B = \frac{{\sqrt 3 }}{2}\).

B. \(\cos C = \frac{{\sqrt 3 }}{2}\).

C. \(\tan B = \sqrt 3 \).

D. \(\cot B = \frac{1}{2}\).

Xem lời giải >>
Bài 23 :

Cho tam giác ABC có \(\widehat A = {40^o},\widehat B = {60^o},AB = 6cm\). Hãy tính (làm tròn đến hàng đơn vị):

a) Chiều cao AH và cạnh AC;

b) Độ dài BH và CH.

Xem lời giải >>