ƯU ĐÃI 50% HỌC PHÍ + TẶNG MIỄN PHÍ BỘ SÁCH ĐỀ TỔNG HỢP
Cho hàm số y=x+1x. Giá trị nhỏ nhất của hàm số trên khoảng (0;+∞) là:
2
−3
5
10
- Bước 1: Tính f′(x), giải phương trình y′=0 tìm các nghiệm x1,x2,...xn thỏa mãn a⩽x1<x2<...<xn⩽b.
- Bước 2: Tính các giá trị f(x1),f(x2),...,f(xn) và A=lim.
- Bước 3: So sánh các giá trị tính được và kết luận.
TXĐ: R\backslash \left\{ 0 \right\}
y' = 1 - \dfrac{1}{{{x^2}}} = \dfrac{{{x^2} - 1}}{{{x^2}}}
y' = 0 \Leftrightarrow \dfrac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x=1 (tm) hoặc x=-1 (ktm)
Bảng biến thiên:
\Rightarrow \mathop {Min}\limits_{x \in \left( {0; + \infty } \right)} \,y = f\left( 1 \right) = 2
Đáp án : A
Các bài tập cùng chuyên đề
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \sin x trên đoạn \left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right] lần lượt là
Cho biết GTLN của hàm số f\left( x \right) trên \left[ {1;3} \right] là M = - 2. Chọn khẳng định đúng:
Cho hàm số f\left( x \right) xác định trên \left[ {0;2} \right] và có GTNN trên đoạn đó bằng 5. Chọn kết luận đúng:
Giá trị nhỏ nhất của hàm số y = 2x + \cos x trên đoạn \left[ {0;1} \right] là :
Cho hàm số f\left( x \right) xác định và liên tục trên R, có \mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty ;\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty , khi đó:
Gọi m là giá trị nhỏ nhất của hàm số y = x - 1 + \dfrac{4}{{x - 1}} trên khoảng \left( {1; + \infty {\rm{\;}}} \right). Tìm m?
Cho hàm số y = f\left( x \right) có bảng biến thiên như hình vẽ, chọn kết luận đúng:
Cho hàm số y = f\left( x \right) có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?
Cho hàm số y = f\left( x \right) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng?
Tìm giá trị lớn nhất của hàm số y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1 trên đoạn \left[ {2;4} \right]
Tìm GTLN và GTNN của hàm số y = {x^5} - 5{x^4} + 5{x^3} + 1 trên đoạn \left[ { - 1;2} \right]
Giá trị lớn nhất của hàm số f\left( {\text{x}} \right) = \dfrac{{6 - 8{\text{x}}}}{{{x^2} + 1}} trên tập xác định của nó là:
Gọi giá trị lớn nhất và nhỏ nhất của hàm số y = {x^4} + 2{x^2} - 1 trên đoạn \left[ { - 1;2} \right] lần lượt là M và m. Khi đó giá trị của M.m là:
Cho hàm số y = \dfrac{{2mx + 1}}{{m - x}}. Giá trị lớn nhất của hàm số trên \left[ {2;3} \right] bằng \dfrac{{ - 1}}{3} khi m bằng:
Cho hàm số y = {x^3} - 3m{x^2} + 6, giá trị nhỏ nhất của hàm số trên \left[ {0;3} \right] bằng 2 khi:
Cho các số thực x, y thỏa mãn {\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} + 2xy \leqslant 32. Giá trị nhỏ nhất m của biểu thức A = {x^3} + {y^3} + 3\left( {xy - 1} \right)\left( {x + y - 2} \right) là:
Có bao nhiêu số nguyên m \in \left[ { - 5;5} \right] để \mathop {\min }\limits_{\left[ {1;3} \right]} \left| {{x^3} - 3{x^2} + m} \right| \ge 2.
Cho hai số thực x,\,y thỏa mãn {x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} . Gọi M,\,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức T = \left| {\sqrt {{x^2} + {y^2}} - a} \right|. Có bao nhiêu giá trị nguyên thuộc đoạn \left[ { - 10;\,10} \right] của tham số a để M \ge 2m?
Cho f\left( x \right) mà đồ thị hàm số y = f'\left( x \right) như hình vẽ bên
Bất phương trình f\left( x \right) > \sin \dfrac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} \right] khi và chỉ khi:
Cho hàm số y = f\left( x \right) xác định và liên tục trên \mathbb{R}, có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f\left( x \right) trên đoạn \left[ { - 2;2} \right].