Đề bài

Tính tổng và hiệu của hai đa thức \(P = {x^2}y + {x^3} - x{y^2} + 3\)\(Q = {x^3} + x{y^2} - xy - 6\).

Phương pháp giải

Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu (+) (hoặc dấu (-)) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

Chú ý trước dấu ngoặc là dấu (-) thì khi phá ngoặc, ta đổi dấu tất cả các hạng tử trong dấu ngoặc.

Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}P + Q = {x^2}y + {x^3} - x{y^2} + 3 + {x^3} + x{y^2} - xy - 6\\ = \left( {{x^3} + {x^3}} \right) + {x^2}y + \left( { - x{y^2} + x{y^2}} \right) - xy + \left( {3 - 6} \right)\\ = 2{x^3} + {x^2}y - xy - 3\\P - Q = {x^2}y + {x^3} - x{y^2} + 3 - \left( {{x^3} + x{y^2} - xy - 6} \right)\\ = {x^2}y + {x^3} - x{y^2} + 3 - {x^3} - x{y^2} + xy + 6\\ = \left( {{x^3} - {x^3}} \right) + {x^2}y + \left( { - x{y^2} - x{y^2}} \right) + xy + \left( {3 + 6} \right)\\ =  - 2x{y^2} + {x^2}y + xy + 9\end{array}\)

Xem thêm : SGK Toán 8 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Cho hai đa thức \(G = {x^2}y - 3xy - 3\) và \(H = 3{x^2}y + xy - 0,5x + 5\).

Hãy tính G+H và G-H.

Xem lời giải >>
Bài 2 :

Rút gọn và tính giá trị của biểu thức sau tại x=2 và y=-1.

\(K = \left( {{x^2}y + 2x{y^3}} \right) - \left( {7,5{x^3}{y^2} - {x^3}} \right) + \left( {3x{y^3} - {x^2}y + 7,5{x^3}{y^2}} \right)\)

Xem lời giải >>
Bài 3 :

Rút gọn biểu thức:

a)      \(\left( {x - y} \right) + \left( {y - z} \right) + \left( {z - x} \right)\);

b)      \(\left( {2x - 3y} \right) + \left( {2y - 3z} \right) + \left( {2z - 3x} \right)\).

Xem lời giải >>
Bài 4 :

Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) và \(B = 3xyz - 2{x^2}y + x - 4\).

a)      Tìm các đa thức A+B và A-B.

b)      Tính giá trị của các đa thức A và A+B tại x=0,5;y=-2 và z=1.

Xem lời giải >>
Bài 5 :

Cho các biểu thức:

\(\dfrac{4}{5}x;\left( {\sqrt 2  - 1} \right)xy; - 3x{y^2};\dfrac{1}{2}{x^2}y;\dfrac{1}{x}{y^3}; - xy + \sqrt 2 ;\dfrac{{ - 3}}{2}{x^2}y;\dfrac{{\sqrt x }}{5}.\)

a)      Trong các biểu thức đã cho, biểu thức nào là đơn thức? Biểu thức nào không là đơn thức?

b)      Hãy chỉ ra hệ số và phần biến của mỗi đơn thức đã cho.

c)      Viết tổng tất cả các đơn thức trên để được một đa thức. Xác định bậc của đa thức đó.

Xem lời giải >>
Bài 6 :

Cho hai đa thức:

\(A = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1;\\B = 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2.\)

a)      Tìm đa thức C sao cho A-C=B;

b)      Tìm đa thức D sao cho A+D=B;

c)      Tìm đa thức E sao cho E-A=B;

Xem lời giải >>
Bài 7 :

Cho ba đa thức:

\(M = 3{x^3} - 4{x^2}y + 3x - y;N = 5xy - 3x + 2;P = 3{x^3} + 2{x^2}y + 7x - 1.\)

Tính M + N - P và M - N - P.

Xem lời giải >>
Bài 8 :

Gọi T là tổng, H là hiệu của hai đa thức \(3{x^2}y - 2x{y^2} + xy\) và \( - 2{x^2}y + 3x{y^2} + 1\). Khi đó:
A. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\).
B. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\)
C. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} - xy - 1\)
D. \(T = {x^2}y + x{y^2} + xy - 1\) và \(H = 5{x^2}y + 5x{y^2} + xy - 1\)

Xem lời giải >>
Bài 9 :

Tại một công trình xây dựng, người ta dùng ba loại tấm kính chống nắng \(A\), \(B\) và \(C\) với các kích thước như Hình 1 (tính bằng m). Giá tiền các tấm kính được tính theo diện tích với đơn giá \(a\) đồng/\({m^2}\). Tại đây có hai lần nhập vật liệu như bảng sau:

 

a) Tính tổng số tiền mua kính của cả hai lần.

b) Số tiền lần 2 nhiều hơn lần 1 bao nhiêu?

Xem lời giải >>
Bài 10 :

Cho hai đa thức \(M = 1 + 3xy - 2{x^2}{y^2}\) và \(N = x - xy + 2{x^2}{y^2}\). Tính \(M + N\) và \(M - N\).

Xem lời giải >>
Bài 11 :

Tính:

a) \(x + 2y + \left( {x - y} \right)\)

b) \(2x - y - \left( {3x - 5y} \right)\)

c) \(3{x^2} - 4{y^2} + 6xy + 7 + \left( { - {x^2} + {y^2} - 8xy + 9x + 1} \right)\)

d) \(4{x^2}y - 2x{y^2} + 8 - \left( {3{x^2}y + 9x{y^2} - 12xy + 6} \right)\)

Xem lời giải >>
Bài 12 :

Tính giá trị của biểu thức:

a) \(3{x^2}y - \left( {3xy - 6{x^2}y} \right) + \left( {5xy - 9{x^2}y} \right)\) tại \(x = \frac{2}{3}\), \(y =  - \frac{3}{4}\)

b) \(x\left( {x - 2y} \right) - y\left( {{y^2} - 2x} \right)\) tại \(x = 5\), \(y = 3\)

Xem lời giải >>
Bài 13 :

Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).

a) Tìm đa thức \(Q\) sao cho \(Q - P =  - 2{x^3}y + 7{x^2}y + 3xy\)

b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)

Xem lời giải >>
Bài 14 :

Với ba đa thức: \(A = {x^2} - 2{\rm{x}}y + {y^2};B = 2{{\rm{x}}^2} - {y^2};C = {x^2} - 3{\rm{x}}y\)(ở trong ví dụ 3). Hãy tính:

a) B – C

b) (B – C) + A

Xem lời giải >>
Bài 15 :

Cho hai đa thức \(P = 4x{y^2} + 6x - 3\) và \(Q = 2x{y^2} - 5x + 1\)

  1. Viết các biểu thức \(P + Q\) và \(P - Q\)
  2. Thu gọn \(P + Q\) và \(P - Q\)
Xem lời giải >>
Bài 16 :

Tính tổng và hiệu của hai đa thức \(P = x{y^3} - {x^3} + 2x - 3y\) và \(Q = 2x{y^3} + 6{x^3} - 7x + 1\)

Xem lời giải >>
Bài 17 :

Cho hai đa thức \(P = {x^3}{y^4} - 4{x^2}{y^2} - 4x + 6\)vvà \(Q = 5{x^2}{y^2} - 3{x^3}{y^4} + x - 1\). Tính \(P + Q\) và \(P - Q\).

Xem lời giải >>
Bài 18 :

Cho hai đa thức \(A = {x^2} - 3xy + 2{y^2}\)và \(B = {y^2} + 2xy + {x^2} + 1\)

a)     Tìm đa thức \(C\) sao cho \(C = A + B\)

b)    Tìm đa thức \(D + A = B\)

Xem lời giải >>
Bài 19 :

Cho hai đa thức: \(A = {x^7} - 4{x^3}{y^2} - 5xy + 7;B = {x^7} + 5{x^3}{y^2} - 3xy - 3\)

a) Tìm đa thức \(C\) sao cho \(C = A + B\)

b) Tìm đa thức \(D\) sao cho \(A + D = B\)

Xem lời giải >>
Bài 20 :

Tính:

a) \(7x + \left( { - 3xy + 5x} \right)\);

b) \(4x - 3y - \left( {3 + 3x - y} \right)\);

c) \(2xy - 4xy - \left( {y - 3xy} \right)\);

d) \(\left( {{x^2}y - 3x{y^2} - {y^2}} \right) + \left( {5x{y^2} - 4{y^2} + 5{x^2}y} \right)\).

Xem lời giải >>
Bài 21 :

Tính:

a) \(2a + 4b + \left( { - 4b + 5a} \right) - \left( {6a - 9b} \right)\);

b) \(6a - \left[ {b + 3a - \left( {4a - b} \right)} \right]\).

Xem lời giải >>
Bài 22 :

Tìm tổng \(P + Q\) và hiệu \(P - Q\) của hai đa thức:

\(P = 4{x^2}{y^2} - 3x{y^3} + 5{x^3}y - xy + 2x - 3\)

\(Q =  - 4{x^2}{y^2} - 4x{y^3} - {x^3}y + xy + y + 1\)

Xem lời giải >>
Bài 23 :

Cho ba đa thức:

\(M = 3{x^3} - 5{x^2}y + 5x - 3y\)

\(N = 4xy - 4x + y\)

\(P = 3{x^3} + {x^2}y + x + 1\).

Tính \(M + N - P\) và \(M - N - P\).

Xem lời giải >>
Bài 24 :

Tính tổng và hiệu của hai đa thức \(P = {x^2}y + {x^3} - x{y^2} + 3\) \(Q = {x^3} + x{y^2} - xy - 6\) .

Xem lời giải >>
Bài 25 :

Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) \(B = 3xyz - 2{x^2}y + x - 4\) .

a) Tìm các đa thức \(A + B\) \(A - B\) ;

b) Tính giá trị của các đa thức A và \(A + B\) tại \(x = 0,5;y = - 2\) \(z = 1\) .

Xem lời giải >>
Bài 26 :

Cho hai đa thức:

\(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\);

\(Q =  - {x^3}y{z^2} - 2{x^2}y + 3 + 3{x^3}y{z^2} + xy - y + 2\).

a) Thu gọn và xác định bậc của mỗi đa thức P và Q.

b) Xác định bậc của mỗi đa thức \(P + Q\) và \(P - Q\).

Xem lời giải >>
Bài 27 :

Cho đa thức \(P = 5{x^2}y - 2x{y^2} + xy - x + y - 2\).

a) Tìm đa thức Q, biết rằng \(P + Q = \left( {x + y} \right)\left( {2xy + 2{y^2} - 1} \right)\).

b) Tìm đa thức R, biết rằng \(P - R =  - xy\left( {x - y} \right)\).

Xem lời giải >>
Bài 28 :

Cho hai đa thức: \(M = 23{x^{23}}y - 22x{y^{23}} + 21y - 1\) và \(N =  - 22x{y^3} - 42y - 1\)

a) Tính giá trị của mỗi đa thức \(M,N\) tại \(x = 0;y =  - 2\)

b) Tính \(M + N;M - N\)

c) Tìm đa thức \(P\) sao cho \(M - N - P = 63y + 1\)

Xem lời giải >>
Bài 29 :

Cho hai đa thức

\(A = 7xy{z^2}-5x{y^2}z + 3{x^2}yz-xyz + 1;\\B = 7{x^2}yz-5x{y^2}z + 3xy{z^2}-2.\)

a) Tìm đa thức C sao cho \(A-C = B\) .

b) Tìm đa thức D sao cho \(A + D = B\) .

c) Tìm đa thức E sao cho \(E-A = B\)

Xem lời giải >>
Bài 30 :

Từ một miếng bìa, người ta cắt ra hai hình tròn có bán kính x centimét và y centimét. Tìm biểu thức biểu thị diện tích phần còn lại của miếng bìa, nếu biết miếng bìa có hình dạng gồm hai hình vuông ghép lại và có kích thước (centimét) như hình bên. Biểu thức đó có phải là một đa thức không? Nếu phải thì đó là đa thức bậc mấy?

Xem lời giải >>