1. Vẽ một góc nhọn có số đo \(\alpha \) bất kì. Chọn một điểm C trên một cạnh và vẽ đường vuông góc CA từ C xuống cạnh còn lại (Hình 4.3). Hãy đo và tính các tỉ số cạnh đối và cạnh huyền, cạnh kề và cạnh huyền, cạnh đối và cạnh kề của góc B trong tam giác ABC.
2. Vẽ thêm một góc nhọn B’ cũng có số đo \(\alpha \) như trên và thực hiện tương tự.
3. Sử dụng dấu hiệu đồng dạng của hai tam giác vuông, hãy giải thích vì sao các cặp tỉ số tương ứng của \(\widehat B\) và \(\widehat {B'}\) bằng nhau.

Chứng minh tam giác ABC đồng dạng với tam giác A’B’C’ theo trường hợp góc – góc, từ đó suy ra các cặp tỉ số tương ứng của \(\widehat B\) và \(\widehat {B'}\) bằng nhau.
1. Ta đo được \(AB = 1,6cm,AC = 0,8cm,BC = 1,8cm\).
Tỉ số cạnh đối và cạnh huyền của góc B là:
\(\frac{{CA}}{{BC}} = \frac{{0,8}}{{1,8}} = \frac{4}{9}\).
Tỉ số cạnh kề và cạnh huyền của góc B là:
\(\frac{{BA}}{{BC}} = \frac{{1,6}}{{1,8}} = \frac{8}{9}\).
Tỉ số cạnh đối và cạnh kề của góc B là:
\(\frac{{CA}}{{AB}} = \frac{{0,8}}{{1,6}} = \frac{1}{2}\).
2. Ta đo được \(A'B' = 2,4cm,A'C' = 1,2cm,BC = 2,7cm\).
Tỉ số cạnh đối và cạnh huyền của góc B’ là:
\(\frac{{C'A'}}{{B'C'}} = \frac{{1,2}}{{2,7}} = \frac{4}{9}\).
Tỉ số cạnh kề và cạnh huyền của góc B’ là:
\(\frac{{B'A'}}{{B'C'}} = \frac{{2,4}}{{2,7}} = \frac{8}{9}\).
Tỉ số cạnh đối và cạnh kề của góc B’ là:
\(\frac{{C'A'}}{{A'B'}} = \frac{{1,2}}{{2,4}} = \frac{1}{2}\).

Các bài tập cùng chuyên đề
Bài 1 :
Cho tam giác $MNP$ vuông tại $M$. Khi đó $\cos \widehat {MNP}$ bằng

$\dfrac{{MN}}{{NP}}$
$\dfrac{{MP}}{{NP}}$
$\dfrac{{MN}}{{MP}}$
$\dfrac{{MP}}{{MN}}$
Bài 2 :
Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định đúng.
$\sin \alpha + \cos \alpha = 1$
${\sin ^2}\alpha + {\cos ^2}\alpha = 1$
${\sin ^3}\alpha + {\cos ^3}\alpha = 1$
$\sin \alpha - cos\alpha = 1$
Bài 3 :
Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định sai.
$\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}\,\,$
$\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }}\,\,$
$\tan \alpha .\cot \alpha = 1$
${\tan ^2}\alpha - 1 = {\cos ^2}\alpha $
Bài 4 :
Cho tam giác $ABC$ vuông tại $C$ có \(BC = 1,2\,cm,\,\,AC = 0,9\,cm.\) Tính các tỉ số lượng giác $\sin B;\cos B$ .
$\sin B = 0,6;\cos B = 0,8$
$\sin B = 0,8;\cos B = 0,6$
$\sin B = 0,4;\cos B = 0,8$
$\sin B = 0,6;\cos B = 0,4$
Bài 5 :
Cho tam giác $ABC$ vuông tại $A$ có \(BC = 8\,cm,\,\,AC = 6cm.\) Tính tỉ số lượng giác $\tan C$ (làm tròn đến chữ số thập phân thứ $2$ ).
$\tan C \approx 0,87$
$\tan C \approx 0,86$
$\tan C \approx 0,88$
$\tan C \approx 0,89$
Bài 6 :
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ có \(CH = 4\,cm,\,BH = 3\,cm.\) Tính tỉ số lượng giác $\cos C$ (làm tròn đến chữ số thập phân thứ $2$ )
$\cos C \approx 0,76$
$\cos C \approx 0,77$
$\cos C \approx 0,75$
$\cos C \approx 0,78$
Bài 7 :
Cho $\alpha$ là góc nhọn. Tính \(\sin \alpha,\,\cot \alpha \) biết \(\cos \alpha = \dfrac{2}{5}\).
$\sin \alpha = \dfrac{{\sqrt {21} }}{{25}};\cot \alpha = \dfrac{{3\sqrt {21} }}{{21}}$
$\sin \alpha = \dfrac{{\sqrt {21} }}{5};\cot \alpha = \dfrac{5}{{\sqrt {21} }}$
$\sin \alpha = \dfrac{{\sqrt {21} }}{3};\cot \alpha = \dfrac{3}{{\sqrt {21} }}$
$\sin \alpha = \dfrac{{\sqrt {21} }}{5};\cot \alpha = \dfrac{2}{{\sqrt {21} }}$
Bài 8 :
Cho $\alpha $ là góc nhọn bất kỳ. Khi đó $C = {\sin ^4}\alpha + {\cos ^4}\alpha $ bằng
$C = 1 - 2{\sin ^2}\alpha .{\cos ^2}\alpha $
$C = 1$
$C = {\sin ^2}\alpha .{\cos ^2}\alpha $
$C = 1 + 2{\sin ^2}\alpha .{\cos ^2}\alpha $
Bài 9 :
Cho $\alpha $ là góc nhọn bất kỳ. Rút gọn $P = \left( {1 - {{\sin }^2}\alpha } \right).{\cot ^2}\alpha + 1 - {\cot ^2}\alpha $ ta được
$P = {\sin ^2}\alpha $
$P = {\cos ^2}\alpha $
$P = {\tan ^2}\alpha $
$P = 2{\sin ^2}\alpha $
Bài 10 :
Cho $\alpha $ là góc nhọn bất kỳ. Biểu thức $Q = \dfrac{{1 + {{\sin }^2}\alpha }}{{1 - {{\sin }^2}\alpha }}$ bằng
$Q = 1 + {\tan ^2}\alpha $
$Q = 1 + 2{\tan ^2}\alpha $
$Q = 1 - 2{\tan ^2}\alpha $
$Q = 2{\tan ^2}\alpha $
Bài 11 :
Cho $\tan \alpha = 2$. Tính giá trị của biểu thức $G = \dfrac{{2\sin \alpha + \cos \alpha }}{{\cos \alpha - 3\sin \alpha }}$
$G =1$
$G = - \dfrac{4}{5}$
$G = - \dfrac{6}{5}$
$G = - 1$
Bài 12 :
Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng
$2$
$3$
$1$
$4$
Bài 13 :
Cho tam giác \(MNP\) vuông tại \(M\). Khi đó \(\tan \widehat {MNP}\) bằng
\(\dfrac{{MN}}{{NP}}\)
\(\dfrac{{MP}}{{NP}}\)
\(\dfrac{{MN}}{{MP}}\)
\(\dfrac{{MP}}{{MN}}\)
Bài 14 :
Cho tam giác \(ABC\) vuông tại \(C\) có \(AC = 1\,cm,\,\,BC = 2\,cm.\) Tính các tỉ số lượng giác \(\sin B;\cos B\)
\(\sin B = \dfrac{1}{{\sqrt 3 }};\cos B = \dfrac{{2\sqrt 3 }}{3}\)
\(\sin B = \dfrac{{\sqrt 5 }}{5};\cos B = \dfrac{{2\sqrt 5 }}{5}\)
\(\sin B = \dfrac{1}{2};\cos B = \dfrac{2}{{\sqrt 5 }}\)
\(\sin B = \dfrac{{2\sqrt 5 }}{5};\cos B = \dfrac{{\sqrt 5 }}{5}\)
Bài 15 :
Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 9\,cm,\,\,AC = 5cm.\) Tính tỉ số lượng giác \(\tan C\) (làm tròn đến chữ số thập phân thứ \(1\) )
\(\tan C \approx 0,67\)
\(\tan C \approx 0,5\)
\(\tan C \approx 1,4\)
\(\tan C \approx 1,5\)
Bài 16 :
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\) có \(CH = 11\,cm,\,BH = 12\,cm.\) Tính tỉ số lượng giác \(\cos C\) (làm tròn đến chữ số thập phân thứ \(2\) )
\(\cos C \approx 0,79\)
\(\cos C \approx 0,69\)
\(\cos C \approx 0,96\)
\(\cos C \approx 0,66\)
Bài 17 :
Tính \(\sin \alpha ,\,\,\tan \alpha \) biết \(\cos \alpha = \dfrac{3}{4}\).
\(\sin \alpha = \dfrac{4}{{\sqrt 7 }};\tan \alpha = \dfrac{{\sqrt 7 }}{3}\)
\(\sin \alpha = \dfrac{{\sqrt 7 }}{4};\tan \alpha = \dfrac{3}{{\sqrt 7 }}\)
\(\sin \alpha = \dfrac{{\sqrt 7 }}{4};\tan \alpha = \dfrac{{\sqrt 7 }}{3}\)
\(\sin \alpha = \dfrac{{\sqrt 7 }}{3};\tan \alpha = \dfrac{{\sqrt 7 }}{4}\)
Bài 18 :
Cho \(\alpha \) là góc nhọn bất kỳ. Khi đó \(C={\sin ^6}\alpha + {\cos ^6}\alpha + 3{\sin ^2}\alpha {\cos ^2}\alpha \) bằng
\(C = 1 - 3{\sin ^2}\alpha .{\cos ^2}\alpha \)
$C=1$
\(C = {\sin ^2}\alpha .{\cos ^2}\alpha \)
\(C = 3{\sin ^2}\alpha .{\cos ^2}\alpha - 1\)
Bài 19 :
Cho \(\alpha \) là góc nhọn bất kỳ. Cho \(P = \left( {1 - {{\sin }^2}\alpha } \right).{\tan ^2}\alpha + \left( {1 - {{\cos }^2}\alpha } \right){\cot ^2}\alpha \), chọn kết luận đúng.
\(P > 1\)
\(P < 1\)
\(P = 1\)
\(P = 2{\sin ^2}\alpha \)
Bài 20 :
Cho \(\alpha \) là góc nhọn bất kỳ. Biểu thức \(Q = \dfrac{{{{\cos }^2}\alpha - {{\sin }^2}\alpha }}{{\cos \alpha .\sin \alpha }}\) bằng
\(Q = \cot \alpha - \tan \alpha \)
\(Q = \cot \alpha + \tan \alpha \)
\(Q = \tan \alpha - \cot \alpha \)
\(Q = 2\tan \alpha \)
Bài 21 :
Cho \(\tan \alpha = 4\). Tính giá trị của biểu thức \(P = \dfrac{{3\sin \alpha - 5\cos \alpha }}{{4\cos \alpha + \sin \alpha }}\)
\(P = \dfrac{7}{8}\)
\(P = \dfrac{{17}}{8}\)
\(P = \dfrac{8}{7}\)
\(P = \dfrac{5}{8}\)
Bài 22 :
Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 3:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng
$3$
$5$
\(\dfrac{3}{5}\)
\(\dfrac{5}{3}\)
Bài 23 :
Chọn kết luận đúng về giá trị biểu thức \(B = \dfrac{{{{\cos }^2}\alpha - 3{{\sin }^2}\alpha }}{{3 - {{\sin }^2}\alpha }}\) biết \(\tan \alpha = 3.\)
\(B > 0\)
\(B < 0\)
\(0 < B < 1\)
\(B = 1\)
Bài 24 :
Cho tam giác \(ABC\) cân tại \(A\) có \(AB = AC = 13cm\); \(BC = 10cm\). Tính \(sinA\).
\(\sin A = \dfrac{{120}}{{169}}\)
\(\sin A = \dfrac{{60}}{{169}}\)
\(\sin A = \dfrac{5}{6}\)
\(\sin A = \dfrac{{10}}{{13}}\)
Bài 25 :
Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 3,AB = 4\). Khi đó \(\cos B\) bằng
\(\dfrac{3}{4}\)
\(\dfrac{3}{5}\)
\(\dfrac{4}{3}\)
\(\dfrac{4}{5}\)
Bài 26 :
Xét góc C của tam giác ABC vuông tại A (H.4.3) . Hãy chỉ ra cạnh đối và cạnh kề của góc C.

Bài 27 :
Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có \(\widehat B = \widehat {B'} = \alpha .\) Chứng minh rằng:
a) \(\Delta ABC\backsim \Delta A'B'C';\)
b) \(\frac{{AC}}{{BC}} = \frac{{A'C'}}{{B'C'}};\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}};\frac{{AC}}{{AB}} = \frac{{A'C'}}{{A'B'}};\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\)
Bài 28 :
Cho tam giác ABC vuông tại A có AB = 5 cm, AC = 12 cm. Hãy tính các tỉ số lượng giác của góc B.
Bài 29 :
Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, cosin, tang, cotang của các góc nhọn B và C khi biết:
a) AB = 8 cm, BC = 17 cm;
b) AC = 0,9 cm, AB = 1,2 cm.
Bài 30 :
Trong Hình 4.32, \(\cos \alpha \) bằng

A. \(\frac{5}{3}.\)
B. \(\frac{3}{4}.\)
C. \(\frac{3}{5}.\)
D. \(\frac{4}{5}.\)