Đề bài

Theo quy chuẩn kĩ thuật quốc gia về xây dựng công trình đảm bảo cho người khuyết tật tiếp cận sử dụng (QCVN 10:2014/BXD), tỉ số giữa chiều cao h và chiều dài theo phương ngang d của dốc cho xe lăn không được lớn hơn \(\frac{1}{{12}}\) như Hình 4.1. Nếu góc nghiêng của một con dốc so với phương ngang là \(\alpha  = {5^o}\) thì con dốc đó có đáp ứng được quy chuẩn trên không?

Phương pháp giải

Trong tam giác vuông có góc nhọn \(\alpha \), số giữa cạnh đối và cạnh kề được gọi là \(\tan \alpha \).

Lời giải của GV Loigiaihay.com

Ta có: \(\tan \alpha  = \frac{h}{d}\) nên \(\frac{h}{d} = \tan {5^o} \approx 0,087 > \frac{1}{{12}}\) nên con dốc đó không đáp ứng được quy chuẩn trên.

Xem thêm : SGK Toán 9 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác $MNP$ vuông tại $M$. Khi đó $\cos \widehat {MNP}$ bằng

Xem lời giải >>
Bài 2 :

Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định đúng.

Xem lời giải >>
Bài 3 :

Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định sai.

Xem lời giải >>
Bài 4 :

Cho tam giác $ABC$ vuông tại  $C$ có \(BC = 1,2\,cm,\,\,AC = 0,9\,cm.\) Tính các tỉ số lượng giác $\sin B;\cos B$ .

Xem lời giải >>
Bài 5 :

Cho tam giác $ABC$ vuông tại  $A$ có \(BC = 8\,cm,\,\,AC = 6cm.\) Tính tỉ số lượng giác $\tan C$ (làm tròn đến chữ số thập phân thứ $2$ ).

Xem lời giải >>
Bài 6 :

Cho tam giác $ABC$ vuông tại  $A$, đường cao $AH$ có \(AB = 13\,cm,\,BH = 0,5\,dm\) Tính tỉ số lượng giác $\sin C$ (làm tròn đến chữ số thập phân thứ $2$ )

Xem lời giải >>
Bài 7 :

Cho tam giác $ABC$ vuông tại  $A$, đường cao $AH$ có \(CH = 4\,cm,\,BH = 3\,cm.\) Tính tỉ số lượng giác $\cos C$ (làm tròn đến chữ số thập phân thứ $2$ )

Xem lời giải >>
Bài 8 :

Cho $\alpha$ là góc nhọn. Tính \(\sin \alpha,\,\cot \alpha \) biết \(\cos \alpha  = \dfrac{2}{5}\).

Xem lời giải >>
Bài 9 :

Cho $\alpha $ là góc nhọn bất kỳ. Khi đó $C = {\sin ^4}\alpha  + {\cos ^4}\alpha $ bằng

Xem lời giải >>
Bài 10 :

Cho $\alpha $ là góc nhọn bất kỳ. Rút gọn $P = \left( {1 - {{\sin }^2}\alpha } \right).{\cot ^2}\alpha  + 1 - {\cot ^2}\alpha $ ta được

Xem lời giải >>
Bài 11 :

Cho $\alpha $ là góc nhọn bất kỳ. Biểu thức $Q = \dfrac{{1 + {{\sin }^2}\alpha }}{{1 - {{\sin }^2}\alpha }}$ bằng

Xem lời giải >>
Bài 12 :

Cho $\tan \alpha  = 2$. Tính giá trị của biểu thức $G = \dfrac{{2\sin \alpha  + \cos \alpha }}{{\cos \alpha  - 3\sin \alpha }}$

Xem lời giải >>
Bài 13 :

Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng

Xem lời giải >>
Bài 14 :

Cho tam giác \(MNP\) vuông tại \(M\). Khi đó \(\tan \widehat {MNP}\) bằng

Xem lời giải >>
Bài 15 :

Cho tam giác \(ABC\) vuông tại  \(C\) có \(AC = 1\,cm,\,\,BC = 2\,cm.\) Tính các tỉ số lượng giác \(\sin B;\cos B\)

Xem lời giải >>
Bài 16 :

Cho tam giác \(ABC\) vuông tại  \(A\) có \(BC = 9\,cm,\,\,AC = 5cm.\) Tính tỉ số lượng giác \(\tan C\) (làm tròn đến chữ số thập phân thứ \(1\) )

Xem lời giải >>
Bài 17 :

Cho tam giác \(ABC\) vuông tại  \(A\), đường cao \(AH\) có \(AC = 15\,cm,\,CH = 6\,cm\). Tính tỉ số lượng giác \(\cos B\).

Xem lời giải >>
Bài 18 :

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\) có \(CH = 11\,cm,\,BH = 12\,cm.\) Tính tỉ số lượng giác \(\cos C\) (làm tròn đến chữ số thập phân thứ \(2\) )

Xem lời giải >>
Bài 19 :

Tính \(\sin \alpha ,\,\,\tan \alpha \) biết \(\cos \alpha  = \dfrac{3}{4}\).

Xem lời giải >>
Bài 20 :

Cho \(\alpha \) là góc nhọn bất kỳ. Khi đó \(C={\sin ^6}\alpha  + {\cos ^6}\alpha  + 3{\sin ^2}\alpha {\cos ^2}\alpha \) bằng

Xem lời giải >>
Bài 21 :

Cho \(\alpha \) là góc nhọn bất kỳ. Cho \(P = \left( {1 - {{\sin }^2}\alpha } \right).{\tan ^2}\alpha  + \left( {1 - {{\cos }^2}\alpha } \right){\cot ^2}\alpha \), chọn kết luận đúng.

Xem lời giải >>
Bài 22 :

Cho \(\alpha \) là góc nhọn bất kỳ. Biểu thức \(Q = \dfrac{{{{\cos }^2}\alpha  - {{\sin }^2}\alpha }}{{\cos \alpha .\sin \alpha }}\) bằng

Xem lời giải >>
Bài 23 :

Cho \(\tan \alpha  = 4\). Tính giá trị của biểu thức \(P = \dfrac{{3\sin \alpha  - 5\cos \alpha }}{{4\cos \alpha  + \sin \alpha }}\)

Xem lời giải >>
Bài 24 :

Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 3:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng

Xem lời giải >>
Bài 25 :

Chọn kết luận đúng về giá trị biểu thức \(B = \dfrac{{{{\cos }^2}\alpha  - 3{{\sin }^2}\alpha }}{{3 - {{\sin }^2}\alpha }}\)  biết \(\tan \alpha  = 3.\)

Xem lời giải >>
Bài 26 :

Cho tam giác \(ABC\) cân tại \(A\) có  \(AB = AC = 13cm\); \(BC = 10cm\). Tính \(sinA\).

Xem lời giải >>
Bài 27 :

Cho tam giác \(ABC\) vuông tại \(A,\,\,\angle ABC = {60^0},\) cạnh \(AB = 5cm.\) Độ dài cạnh \(AC\) là

Xem lời giải >>
Bài 28 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 3,AB = 4\). Khi đó \(\cos B\) bằng

Xem lời giải >>
Bài 29 :

Cho hai tam giác vuông \(OAB\) và \(OCD\) như hình vẽ. Biết \(OB = CD = a\), \(AB = OD = b.\) Tính \(\cos \angle AOC\) theo \(a\) và \(b\).

Xem lời giải >>
Bài 30 :

Xét góc C của tam giác ABC vuông tại A (H.4.3) . Hãy chỉ ra cạnh đối và cạnh kề của góc C.


Xem lời giải >>