Đề bài

Một chiếc đồng hồ trong Hình 7.9 có đường viền là một đường tròn tiếp xúc với ba cạnh của khung đồng hồ hình tam giác đều. Đường kính của đường viền mặt đồng hồ là 10 cm. Khung hình tam giác đều của đồng hồ có độ dài cạnh là bao nhiêu centimet (độ dày đường viền của khung không đáng kể)? Làm tròn kết quả đến hàng phần mười.

Phương pháp giải

Đường tròn nội tiếp của tam giác đều cạnh a có tâm là trọng tâm tam giác đều.

Áp dụng hệ thức lượng trong tam giác vuông để tính cạnh của khung đồng hồ.

Lời giải của GV Loigiaihay.com

Ta có đường kính của đường viền mặt đồng hồ là 10 cm suy ra bán kính r = 5 cm.

Giả sử tam giác ABC đều có đường tròn nội tiếp tâm I bán kính r

Do đó, I nằm trên đường phân giác góc A.

Gọi H là trung điểm của BC

Mà tam giác ABC đều nên đường phân giác AI cũng là đường trung tuyến, do A, H, I thẳng hàng và AH là đường cao.

I là trọng tâm tam giác ABC nên ta có:

IH = \(\frac{1}{3}\)AH suy AH = 3IH = 3r

Xét tam giác AHB vuông tại H.

\(\widehat B = {60^o}\) (do tam giác ABC đều)

Áp dụng hệ thức lượng trong tam giác vuông ta có:

BH = AH. cot B = AH. cot 60o = 3r .\(\frac{{\sqrt 3 }}{3}\) = r.\(\sqrt 3 \)

Suy ra BC = 2BH = 2r\(\sqrt 3 \) = 2.5.\(\sqrt 3 \) = 10\(\sqrt 3  \approx 17,3cm\).

Xem thêm : SGK Toán 9 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác ABC đều có trọng tâm G.

a) Giải thích vì sao G cũng là tâm đường tròn nội tiếp tam giác ABC.

b) Từ đó, giải thích vì sao bán kính đường tròn nội tiếp tam giác ABC bằng một nửa đường tròn ngoại tiếp tam giác ABC và bằng \(\frac{{\sqrt 3 }}{6}BC\).

Xem lời giải >>
Bài 2 :

Cho tam giác đều ABC (H.9.22).

a) Vẽ đường tròn (I; r) nội tiếp tam giác ABC.

b) Biết rằng \(BC = 4cm\), hãy tính bán kính r.

Xem lời giải >>
Bài 3 :

Cho tam giác đều ABC ngoại tiếp đường tròn (I). Tính độ dài các cạnh của tam giác ABC biết rằng bán kính của (I) bằng 1cm.

Xem lời giải >>
Bài 4 :

Người ta muốn làm một khung gỗ tam giác đều để đặt vừa khít một chiếc đồng hồ hình tròn có đường kính 30cm (H.9.23). Hỏi độ dài các cạnh (phía bên trong) của khung gỗ phải bằng bao nhiêu?

Xem lời giải >>
Bài 5 :

Tính diện tích tam giác đều có bán kính đường tròn nội tiếp bằng 1 cm.

Xem lời giải >>
Bài 6 :

Cho tam giác đều ABC có đường cao AH = 9 cm. Bán kính r của đường tròn nội tiếp tam giác có độ dài là

A. 6 cm.

B. 3 cm.

C. 4,5 cm.

D. \(\frac{{3\sqrt 3 }}{2}\) cm.

Xem lời giải >>
Bài 7 :

Cho tam giác đều ABC cạnh a, ba đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm O (Hình 14).

a) AM, BN, CP có là các đường phân giác của tam giác ABC hay không?

b) Điểm O có là tâm đường tròn nội tiếp tam giác ABC hay không?

c) Tính OM theo a.

Xem lời giải >>
Bài 8 :

Cho tam giác đều ABC ngoại tiếp đường tròn (O; 6). Tính AB.

Xem lời giải >>
Bài 9 :

Cho bán kính đường tròn nội tiếp tam giác đều bằng 4cm. Tính cạnh của tam giác đều đó.

Xem lời giải >>
Bài 10 :

Bạn Tú muốn đặt một chiếc bánh hình tròn vào chính giữa một chiếc hộp có mặt là hình tam giác đều như Hình 7, 24. Đường kính tối đa của chiếc bánh là bao nhiêu centimet nếu cạnh đáy của hộp là 8 cm? Làm tròn kết quả đến hàng phần mười.

 

Xem lời giải >>
Bài 11 :

Đường tròn nội tiếp của một tam giác đều có đường kính \(20\sqrt 3 \) cm. Độ dài cạnh của tam giác đều bằng

A. 45 cm

B. 60 cm

C. 90 cm

D. 120 cm

Xem lời giải >>
Bài 12 :

Cho $\Delta ABC$ đều ngoại tiếp đường tròn $\left( O,10cm \right)$. Tính độ dài cạnh của tam giác đều.

Xem lời giải >>