Đề bài

Trong một nghiên cứu về loài khủng long, người ta dùng công thức sau để ước tính tốc độ di chuyển của khủng long: \(Fr = \frac{{{v^2}}}{{gl}}\), trong đó Fr là số Froude, v(m/s) là tốc độ di chuyển của khủng long, l(m) là chiều dài chân của khủng long và \(g = 9,8m/{s^2}\) là gia tốc trọng trường.

(Nguồn: R.McNeill Alexander, How Dinosaur Ran, Scientific American, Vol.264, No.4 (April 1991), pp. 130 – 137)

a) Viết biểu thức tính v theo l và Fr từ công thức trên.

b) Ước tính tốc độ di chuyển của loài khủng long Triceratops có chiều dài chân là 2,8m và có số Froude là 0,16 (làm tròn kết quả đến hàng phần mười).

Phương pháp giải

a) Sử dụng kiến thức căn bậc hai của một biểu thức để tìm v: Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của A.

b) + Thay \(l = 2,8,Fr = 0,16,g = 9,8\) vào biểu thức tính vận tốc vừa làm ở phần a.

+ Sử dụng kiến thức căn thức bậc hai của một bình phương để tính: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

Lời giải của GV Loigiaihay.com

a) Vì \(Fr = \frac{{{v^2}}}{{gl}}\) nên \({v^2} = Fr.g.l\).

Do đó, \(v = \sqrt {Fr.g.l} \).

b) Với \(l = 2,8,Fr = 0,16,g = 9,8\) ta có:

\(v = \sqrt {0,16.9,8.2,8}  = \sqrt {\frac{{2744}}{{625}}}  = \sqrt {\frac{{{{14}^3}}}{{{{25}^2}}}}  = \frac{{14\sqrt {14} }}{{25}} \approx 2,1\left( {m/s} \right)\)

Xem thêm : SGK Toán 9 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Cho biểu thức \(P = \dfrac{{2x}}{{\sqrt x  + 1}}\). Giá trị của $P$ khi $x = 9$ là

  • A.

    $\dfrac{9}{2}$

  • B.

    $\dfrac{9}{4}$

  • C.

    $9$

  • D.

    $18$

Xem lời giải >>

Bài 2 :

Cho biểu thức \(P = \dfrac{x}{{\sqrt x  + 1}}\). Giá trị của $P$ khi $x = \dfrac{2}{{2 - \sqrt 3 }}$ là

  • A.

    $4$

  • B.

    $2$

  • C.

    $3$

  • D.

    $1$

Xem lời giải >>

Bài 3 :

Cho biểu thức \(P = \dfrac{{\sqrt x  + 1}}{{\sqrt x  - 2}}\).

Giá trị của $P$ khi $x = 3 + 2\sqrt 2 $ là:

  • A.

    $4 + 3\sqrt 2 $

  • B.

    $4 - 3\sqrt 2 $

  • C.

    $3$

  • D.

    $3\sqrt 2 $

Xem lời giải >>

Bài 4 :

Cho biểu thức \(P = \dfrac{{x + 2\sqrt x  + 2}}{{\sqrt x }}\)với $x > 0$. So sánh $P$ với $4$.

  • A.

    $P > 4$

  • B.

    $P < 4$

  • C.

    $P = 4$

  • D.

    $P \le 4$

Xem lời giải >>

Bài 5 :

Cho biểu thức \(P = \dfrac{{3\sqrt x  - 1}}{{\sqrt x  + 1}}\)với $x \ge 0$. Tìm $x$ biết $P = \sqrt x $ .

  • A.

    $1$

  • B.

    $2$

  • C.

    $3$

  • D.

    $4$

Xem lời giải >>

Bài 6 :

Giá trị của biểu thức  \(2\sqrt {\dfrac{{16a}}{3}}  - 3\sqrt {\dfrac{a}{{27}}}  - 6\sqrt {\dfrac{{4a}}{{75}}} \) là

  • A.

    $\dfrac{{23\sqrt {3a} }}{{15}}$

  • B.

    $\dfrac{{\sqrt {3a} }}{{15}}$

  • C.

    $\dfrac{{23\sqrt a }}{{15}}$

  • D.

    $\dfrac{{3\sqrt {3a} }}{{15}}$

Xem lời giải >>

Bài 7 :

Rút gọn biểu thức  $E = \dfrac{{a - b}}{{2\sqrt a }}\sqrt {\dfrac{{ab}}{{{{(a - b)}^2}}}} $ với $0 < a < b$ ta được

  • A.

    $\dfrac{{\sqrt a }}{2}$

  • B.

    $\dfrac{{\sqrt b }}{2}$

  • C.

    $\dfrac{{ - \sqrt b }}{2}$

  • D.

    $a\sqrt b $

Xem lời giải >>

Bài 8 :

Rút gọn biểu thức  $4{a^4}{b^2}.\sqrt {\dfrac{9}{{{a^8}{b^4}}}} $ với $ab \ne 0$ ta được

  • A.

    $\dfrac{{{a^2}}}{b}$

  • B.

    $12$

  • C.

    $6$

  • D.

    $36$

Xem lời giải >>

Bài 9 :

Cho biểu thức $A = \dfrac{{\sqrt x  + 1}}{{\sqrt x  - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x  + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}$ với $x \ge 0;x \ne 4$

Xem lời giải >>

Bài 10 :

Cho biểu thức

$B = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}$ với $x \ge 0;x \ne 1$

Xem lời giải >>

Bài 11 :

Cho biểu thức $C = \dfrac{{2\sqrt x  - 9}}{{x - 5\sqrt x  + 6}} - \dfrac{{\sqrt x  + 3}}{{\sqrt x  - 2}} - \dfrac{{2\sqrt x  + 1}}{{3 - \sqrt x }}$

với $x \ge 0;x \ne 4;x \ne 9$.

Xem lời giải >>

Bài 12 :

Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x  - 1}}\) với \(x \ge 0;x \ne 1\). Giá trị của \(P\) khi \(x = 4\) là:

  • A.

    \(4\)

  • B.

    \(2\)

  • C.

    \(-2\)

  • D.

    \(\dfrac{2}{3}\)

Xem lời giải >>

Bài 13 :

Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x  - 1}}\) với \(x \ge 0;x \ne 1\). Giá trị của \(P\) khi \(x = \dfrac{8}{{3 - \sqrt 5 }}\) là:

  • A.

    \(5 + \sqrt 5 \)

  • B.

    \(5\)

  • C.

    \(\dfrac{{5 + \sqrt 5 }}{5}\)

  • D.

    \(\sqrt 5 \)

Xem lời giải >>

Bài 14 :

Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x  - 2}}\) với \(x \ge 0;x \ne 4\) . Giá trị của \(P\) khi \(x\)  thỏa mãn phương trình \({x^2} - 5x + 4 = 0\).

  • A.

    \( - \dfrac{1}{2}\)

  • B.

    \(\sqrt 2 \)

  • C.

    \( - 1\)            

  • D.

    Không tồn tại giá trị \(P.\)

Xem lời giải >>

Bài 15 :

Cho biểu thức \(A = \dfrac{{2\sqrt x  + 1}}{{\sqrt x  + 1}}\)với \(x \ge 0\). So sánh \(A\) với \(2\).

  • A.

    \(A > 2\)

  • B.

    \(A < 2\)

  • C.

    \(A = 2\)

  • D.

    \(A \ge 2\)

Xem lời giải >>

Bài 16 :

Cho biểu thức \(B = \dfrac{{\sqrt x  + 3}}{{\sqrt x  + 2}}\)với \(x \ge 0\). So sánh \(A\) với \(1\).

  • A.

    \(B > 1\)

  • B.

    \(B < 1\)

  • C.

    \(B = 1\)

  • D.

    \(B \le 1\)

Xem lời giải >>

Bài 17 :

Cho biểu thức \(A = \dfrac{{\sqrt x  + 1}}{{\sqrt x  - 2}}\) với \(x \ge 0;x \ne 4\). Tìm các giá trị của \(x\) biết \(A = \dfrac{{\sqrt x  - 1}}{2}\) .

  • A.

    \(x = 0;x = 5\)

  • B.

    \(x = 0\)

  • C.

    \(x = 0;x = 25\)

  • D.

    \(x = 5;x = 1\)

Xem lời giải >>

Bài 18 :

Rút gọn biểu thức  \(5\sqrt a  + 6\sqrt {\dfrac{a}{4}}  - a\sqrt {\dfrac{4}{a}}  + 5\sqrt {\dfrac{{4a}}{{25}}} \) với \(a > 0,\) ta được kết quả là:

  • A.

    \(12\sqrt a \)

  • B.

    \(8\sqrt a \)

  • C.

    \(6\sqrt a \)

  • D.

    \(10\sqrt a \)

Xem lời giải >>

Bài 19 :

Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{4 - x}}} \right):\left( {\dfrac{{\sqrt x  - 1}}{{x - 2\sqrt x }} - \dfrac{2}{{\sqrt x }}} \right)\) với \(x \ge 0;x \ne 4;x \ne 9\)

Xem lời giải >>

Bài 20 :

Cho biểu thức \(C = \left( {\dfrac{{\sqrt x }}{{\sqrt x  - 1}} + \dfrac{2}{{x - \sqrt x }}} \right):\dfrac{1}{{\sqrt x  - 1}}\) với \(x > 0;x \ne 1\)

Xem lời giải >>

Bài 21 :

Cho biểu thức \(P = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}}  - 1}} - \dfrac{1}{{\sqrt x  - 1}}} \right):\left( {1 - \dfrac{{x + 4}}{{x + \sqrt x  + 1}}} \right)\)

Xem lời giải >>

Bài 22 :

Cho \(A = \dfrac{{2\sqrt x  - 1}}{{\sqrt x  + 2}}\) với \(x \ge 0.\) Có bao nhiêu giá trị của \(x\) để \(A\) có giá trị nguyên.

  • A.

    \(2\)     

  • B.

    \(1\)     

  • C.

    \(0\)     

  • D.

    \(3\)     

Xem lời giải >>

Bài 23 :

Rút gọn biểu thức  \(D = \dfrac{{2\left( {a + b} \right)}}{{\sqrt b }}\sqrt {\dfrac{b}{{{a^2} + 2ab + {b^2}}}} \) với \(a,b > 0\) ta được:

  • A.

    \(a + b\)

  • B.

    \(2\)

  • C.

    \(\dfrac{{\sqrt b }}{2}\)

  • D.

    \(2\sqrt b \)

Xem lời giải >>

Bài 24 :

Rút gọn biểu thức  \(\dfrac{{{a^2}}}{{11}}.\sqrt {\dfrac{{121}}{{{a^4}{b^{10}}}}} \) với \(ab \ne 0\) ta được:

  • A.

    \(\dfrac{1}{{\left| {{b^5}} \right|}}\)

  • B.

    \(\dfrac{1}{{{b^5}}}\)

  • C.

    \({b^5}\)

  • D.

    \(\dfrac{{11}}{{{b^5}}}\)

Xem lời giải >>

Bài 25 :

Với \(y < 0 < x\), so sánh \(A = 2\left( {x - y} \right)x{y^3}.\dfrac{{\sqrt {{x^2}{y^3}} }}{{\sqrt {{x^4}{y^5}{{\left( {x - y} \right)}^2}} }}\) và \(0.\)

  • A.
    \(A < 0\)
  • B.
    \(A > 0\)
  • C.
    \(A \ge 0\)
  • D.

    Đáp án khác

Xem lời giải >>

Bài 26 :

Với \(a,b > 0\), biểu thức \(3a{b^2}.\sqrt {\dfrac{{{b^2}}}{{{a^4}}}} \) bằng:

  • A.

    \(\dfrac{{ - 3{b^2}}}{a}\)

  • B.

    \(\dfrac{{3{b^2}}}{a}\)

  • C.

    \(\dfrac{{3{b^3}}}{a}\)

  • D.

    \(\dfrac{{ - 3{b^3}}}{a}\)

Xem lời giải >>

Bài 27 :

Cho \(Q = \dfrac{{x + \sqrt x  + 1}}{{\sqrt x }}\). Tìm \(x\) để \(Q = 3\)

  • A.
    \(x =  \pm 1\)  
  • B.
    \(x = 1\)         
  • C.
    \(x =  - 1\)
  • D.
    Kết quả khác
Xem lời giải >>

Bài 28 :

Rút gọn rồi tính giá trị của biểu thức  \(Q = \dfrac{{2x - 3\sqrt x  - 2}}{{\sqrt x  - 2}}\) tại \(x = 2020 - 2\sqrt {2019} \)

  • A.
    \(Q = 2\sqrt x  + 1\,\,\,;\,\,\,2\sqrt {2019}  - 1\)
  • B.
    \(Q = 2\sqrt x  - 1\,\,\,;\,\,\,2\sqrt {2019}  - 3\)
  • C.
    \(Q = \sqrt x  - 2\,\,\,;\,\,\,\sqrt {2019}  - 3\)
  • D.
    \(Q = \sqrt x  + 2\,\,\,;\,\,\,\sqrt {2019}  + 1\)
Xem lời giải >>

Bài 29 :

Cho các biểu thức : \(P = \left( {\dfrac{{3\sqrt x }}{{x\sqrt x  + 1}} - \dfrac{{\sqrt x }}{{x - \sqrt x  + 1}} + \dfrac{1}{{\sqrt x  + 1}}} \right):\dfrac{{\sqrt x  + 3}}{{x - \sqrt x  + 1}}\,\,\,\left( {x \ge 0} \right)\)

Rút gọn biểu thức \(P.\) Tìm các giá trị của \(x\) để \(P \ge \dfrac{1}{5}\).

  • A.

    \(P = \dfrac{1}{\sqrt{x} + 3}\,\,;\,\,0 \le x \le 4\)

  • B.

    \(P = \dfrac{1}{\sqrt{x} + 3}\,\,;\,\,0 \le x \le 2\)

  • C.

    \(P = \dfrac{1}{\sqrt{x} + 1}\,\,;\,\,0 \le x \le 2\)

  • D.

    \(P = \dfrac{1}{\sqrt{x} + 1}\,\,;\,\,0 \le x \le 4\)

Xem lời giải >>

Bài 30 :

Cho căn thức \(\sqrt {{x^2} - 4x + 4} .\)

a) Hãy chứng tỏ rằng căn thức xác định với mọi giá trị của x.

b) Rút gọn căn thức đã cho với \(x \ge 2.\)

c) Chứng tỏ rằng với mọi \(x \ge 2,\) biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.

Xem lời giải >>