Chỉ ra các căn thức bậc hai trong các biểu thức sau và tìm điều kiện để chúng xác định:
\({x^2} + y - 1\); \(\sqrt {{x^2} + 5} \); \(\frac{{xy + 2z}}{{{y^2} + z}}\); \({a^2} - 3a + 4\); \(\sqrt {3u - 6} \).
+ Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn bậc hai của A.
+ \(\sqrt A \) xác định (hay có nghĩa) khi A lấy giá trị không âm.
Các biểu thức là căn thức bậc hai là: \(\sqrt {{x^2} + 5} \); \(\sqrt {3u - 6} \).
Ta thấy: \({x^2} \ge 0\) với mọi số thực x nên \({x^2} + 5 > 0\) với mọi số thực x. Do đó, \(\sqrt {{x^2} + 5} \) xác định với mọi số thực x.
\(\sqrt {3u - 6} \) xác định khi \(3u - 6 \ge 0\), tức là \(u \ge 2\).
Các bài tập cùng chuyên đề
Biểu thức $\sqrt {x - 3} $ có nghĩa khi
Tìm điều kiện xác định của $\sqrt {5 - 3x} $.
Tìm $x$ để $\sqrt {\dfrac{{ - 2}}{{3x - 1}}} $ có nghĩa
Biểu thức \(\sqrt {10 + 100x} \) có nghĩa khi
Tìm điều kiện xác định của\(\sqrt {125 - 5x} \).
Tìm \(x\) để \(\sqrt {\dfrac{{{{\left( { - 5} \right)}^2}}}{{6 - 3x}}} \) có nghĩa
Có bao nhiêu số tự nhiên x để \(\sqrt {16 - x} \) là số nguyên?
A. 2
B. 3
C. 4
D. 5
Cho căn thức bậc hai \(\sqrt {x - 1} \). Biểu thức đó có xác định hay không tại mỗi giá trị sau?
a. \(x = 0\).
b. \(x = 1\).
c. \(x = 2\).
Tìm điều kiện xác định cho mỗi căn thức bậc hai sau:
a. \(\sqrt {x + 1} \);
b. \(\sqrt {{x^2} + 1} \).
Tìm điều kiện xác định cho mỗi căn thức bậc hai sau:
a. \(\sqrt {x + 1} \);
b. \(\sqrt {{x^2} + 1} \).
Tìm điều kiện xác định cho mỗi căn thức bậc hai sau:
a. \(\sqrt[{}]{{x - 6}}\)
b. \(\sqrt[{}]{{17 - x}}\)
c. \(\sqrt[{}]{{\frac{1}{x}}}\)
Điều kiện xác định của biểu thức \(\frac{{9x - 7}}{{\sqrt {7x + 5} }}\) là:
Tìm x để căn thức xác định:
a) \(\sqrt {2x + 7} \)
b) \(\sqrt {12 - 3x} \)
c) \(\sqrt {\frac{1}{{x - 4}}} \)
d) \(\sqrt {{x^2} + 1} \)
Tìm tất cả các số tự nhiên n sao cho \(\sqrt {9 - n} \) là số tự nhiên.
Tìm điều kiện xác định của mỗi biểu thức:
a) \(\sqrt {x + 2024} \)
b) \(\sqrt {7x + 1} \)
c) \(\sqrt {\frac{1}{{{x^2}}}} \)
d) \(\sqrt {\frac{{{x^2} + 1}}{{1 - 2x}}} \)
e) \(\sqrt[3]{{{x^2} + 5}}\)
g) \(\sqrt[3]{{\frac{1}{{32 - x}}}}\)
h) \(\sqrt[3]{{\frac{4}{{x + 3}}}}\)
i) \(\sqrt[3]{{\frac{{2024}}{{{x^2} + 10}}}}\)
Khẳng định nào sau đây là sai?
A. Điều kiện xác định của \(\sqrt { - x} \) là \(x < 0\).
B. Điều kiện xác định của \(\sqrt { - x} \) là \(x \le 0\).
C. Điều kiện xác định của \(\sqrt { - \frac{1}{x}} \) là \(x < 0\).
D. Điều kiện xác định của \(\sqrt { - {x^2}} \) là \(x = 0\).
Cho căn thức \(\sqrt {{x^2} - 4x + 4} \).
a) Hãy chứng tỏ căn thức xác định với mọi giá trị của x.
b) Rút gọn căn thức đã cho với \(x \ge 2\).
c) Chứng tỏ rằng với mọi \(x \ge 2\), biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.
Biểu thức \(\sqrt {3x - 1} \) có nghĩa khi
Điều kiện xác định của biểu thức \(\sqrt {x - 10} \) là:
Biểu thức \(\sqrt {2x - 1} \) xác định khi
Căn thức \(\sqrt {4 - 2x} \) xác định khi